File size: 6,967 Bytes
77ff0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf1396
77ff0b3
 
 
 
 
 
 
 
 
 
 
8ed0878
 
 
 
77ff0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38cd733
77ff0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80d9fe
77ff0b3
 
 
 
 
 
 
dc9e813
77ff0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38cd733
77ff0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9e813
77ff0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a45995e
996b567
77ff0b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding:utf-8 -*-
import os
import logging
import sys
import gradio as gr
import torch
from app_modules.utils import *
from app_modules.presets import *
from app_modules.overwrites import *

logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
)

base_model = "decapoda-research/llama-7b-hf"
adapter_model = "project-baize/baize-lora-7B"
tokenizer,model,device = load_tokenizer_and_model(base_model,adapter_model)


def predict(text,
            chatbot,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,):
    if text=="":
        return history,history,"Empty Context"
    try:
        model
    except:
        return [[text,"No Model Found"]],[],"No Model Found"
    inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)
    if inputs is False:
        return [[x[0],convert_to_markdown(x[1])] for x in history]+[[text,"Sorry, the input is too long."]],history,"Generate Fail"
    else:
        prompt,inputs=inputs
        begin_length = len(prompt)
    
    input_ids = inputs["input_ids"].to(device)

    with torch.no_grad():
        for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
            if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
                if "[|Human|]" in x:
                    x = x[:x.index("[|Human|]")].strip()
                if "[|AI|]" in x:
                    x = x[:x.index("[|AI|]")].strip() 
                x = x.strip(" ")   
                a, b=   [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
                yield a, b, "Generating……"
            if shared_state.interrupted:
                shared_state.recover()
                try:
                    yield a, b, "Stop Success"
                    return
                except:
                    pass
    print(text)
    print(x)
    print("="*80)
    try:
        yield a,b,"Generate Success"
    except:
        pass
        
def retry(
        text,
        chatbot,
        history,
        top_p,
        temperature,
        max_length_tokens,
        max_context_length_tokens,
        ):
    logging.info("Retry……")
    if len(history) == 0:
        yield chatbot, history, f"Empty context"
        return
    chatbot.pop()
    inputs = history.pop()[0]
    for x in predict(inputs,chatbot,history,top_p,temperature,max_length_tokens,max_context_length_tokens):
        yield x


gr.Chatbot.postprocess = postprocess

with open("assets/custom.css", "r", encoding="utf-8") as f:
    customCSS = f.read()

with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
    history = gr.State([])
    user_question = gr.State("")
    with gr.Row():
        gr.HTML(title)
        status_display = gr.Markdown("Success", elem_id="status_display")
    gr.Markdown(description_top)
    with gr.Row(scale=1).style(equal_height=True):
        with gr.Column(scale=5):
            with gr.Row(scale=1):
                chatbot = gr.Chatbot(elem_id="chuanhu_chatbot").style(height="100%")
            with gr.Row(scale=1):
                with gr.Column(scale=12):
                    user_input = gr.Textbox(
                        show_label=False, placeholder="Enter text"
                    ).style(container=False)
                with gr.Column(min_width=70, scale=1):
                    submitBtn = gr.Button("Send")

                  
            with gr.Row(scale=1):
                emptyBtn = gr.Button(
                    "🧹 New Conversation",
                )
                retryBtn = gr.Button("🔄 Regenerate")
                delLastBtn = gr.Button("🗑️ Remove Last Turn") 
        with gr.Column():
            with gr.Column(min_width=50, scale=1):
                with gr.Tab(label="Parameter Setting"):
                    gr.Markdown("# Parameters")
                    top_p = gr.Slider(
                        minimum=-0,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        interactive=True,
                        label="Top-p",
                    )
                    temperature = gr.Slider(
                        minimum=-0,
                        maximum=2.0,
                        value=1,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    max_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=512,
                        value=256,
                        step=8,
                        interactive=True,
                        label="Max Generation Tokens",
                    )
                    max_context_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=2048,
                        step=128,
                        interactive=True,
                        label="Max History Tokens",
                    )
    gr.Markdown(description)

    predict_args = dict(
        fn=predict,
        inputs=[
            user_question,
            chatbot,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ],
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )
    retry_args = dict(
        fn=retry,
        inputs=[
            user_input,
            chatbot,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ],
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )

    reset_args = dict(
        fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
    )
 
    # Chatbot
    transfer_input_args = dict(
        fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn], show_progress=True
    )

    user_input.submit(**transfer_input_args).then(**predict_args)

    submitBtn.click(**transfer_input_args).then(**predict_args)

    emptyBtn.click(
        reset_state,
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )
    emptyBtn.click(**reset_args)

    retryBtn.click(**retry_args)

    delLastBtn.click(
        delete_last_conversation,
        [chatbot, history],
        [chatbot, history, status_display],
        show_progress=True,
    )

demo.title = "Baize"

if __name__ == "__main__":
    reload_javascript()
    demo.queue(concurrency_count=1).launch(
        share=False, favicon_path="./assets/favicon.ico", inbrowser=True
    )