Spaces:
Runtime error
Runtime error
import gradio as gr | |
from prodiapy import Prodia | |
from PIL import Image | |
from io import BytesIO | |
import requests | |
import random | |
import os | |
import base64 | |
client = Prodia() | |
def infer(source, target): | |
if source_image is None or target_image is None: | |
return | |
source_url = upload_image(source) | |
target_url = upload_image(target) | |
job = client.faceswap(source_url=source_url, target_url=target_url) | |
res = client.wait(job, raise_on_fail=False) | |
if res.failed: | |
return | |
return res.image_url | |
def upload_image(file): | |
files = {'file': open(file, 'rb')} | |
img_id = requests.post(os.getenv("IMAGE_API_1"), files=files).json()['id'] | |
payload = { | |
"content": "", | |
"nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH", | |
"replies": [], | |
"attachments": [img_id] | |
} | |
res = requests.post(os.getenv("IMAGE_API_2"), json=payload, headers={"x-session-token": os.getenv("SESSION_TOKEN")}) | |
return f"{os.getenv('IMAGE_API_1')}/{img_id}/{res.json()['attachments'][0]['filename']}" | |
def image_to_base64(image: Image): | |
# Convert the image to bytes | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") # You can change format to PNG if needed | |
# Encode the bytes to base64 | |
img_str = base64.b64encode(buffered.getvalue()) | |
return img_str.decode('utf-8') # Convert bytes to string | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.HTML("<h1><center>Face Swap</center></h1>") | |
with gr.Row(): | |
with gr.Row(): | |
source_image = gr.Image(type="filepath", label="Source Image") | |
target_image = gr.Image(type="filepath", label="Target Image") | |
with gr.Column(): | |
result = gr.Image() | |
run_button = gr.Button("Swap Faces", variant="primary") | |
gr.Examples( | |
examples=[ | |
[ | |
"/examples/example1.jpg", | |
"/examples/example2.jpg" | |
] | |
], | |
fn=infer, | |
inputs=[source_image, target_image], | |
outputs=[result] | |
) | |
run_button.click(fn=infer, inputs=[source_image, target_image], outputs=[result]) | |
demo.queue(max_size=20, api_open=False).launch(show_api=False, max_threads=400) | |