ariG23498 HF staff commited on
Commit
51718fb
·
1 Parent(s): 55c0289

chore: display the image from the url

Browse files
Files changed (2) hide show
  1. app.py +19 -6
  2. utils.py +53 -0
app.py CHANGED
@@ -1,9 +1,22 @@
 
1
  import streamlit as st
2
  import tensorflow as tf
3
 
4
- image_url = st.text_input(
5
- label="URL of image",
6
- value="",
7
- placeholder="https://your-favourite-image.png"
8
- )
9
- st.write("Image URL:", image_url)
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from . import utils
2
  import streamlit as st
3
  import tensorflow as tf
4
 
5
+ def main():
6
+ image_url = st.text_input(
7
+ label="URL of image",
8
+ value="",
9
+ placeholder="https://your-favourite-image.png"
10
+ )
11
+
12
+ # Preprocess the same image but with normlization.
13
+ img_url = "https://dl.fbaipublicfiles.com/dino/img.png"
14
+ image, preprocessed_image = utils.load_image_from_url(
15
+ image_url,
16
+ model_type="dino"
17
+ )
18
+ st.image(image, caption="Original Image")
19
+
20
+
21
+ if __name__ == "__main__":
22
+ main()
utils.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import the necessary packages
2
+ import tensorflow as tf
3
+ from tensorflow.keras import layers
4
+
5
+ from PIL import Image
6
+ from io import BytesIO
7
+ import requests
8
+ import numpy as np
9
+
10
+
11
+ RESOLUTION = 224
12
+
13
+ crop_layer = layers.CenterCrop(RESOLUTION, RESOLUTION)
14
+ norm_layer = layers.Normalization(
15
+ mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
16
+ variance=[(0.229 * 255) ** 2, (0.224 * 255) ** 2, (0.225 * 255) ** 2],
17
+ )
18
+ rescale_layer = layers.Rescaling(scale=1./127.5, offset=-1)
19
+
20
+
21
+ def preprocess_image(image, model_type, size=RESOLUTION):
22
+ # Turn the image into a numpy array and add batch dim.
23
+ image = np.array(image)
24
+ image = tf.expand_dims(image, 0)
25
+
26
+ # If model type is vit rescale the image to [-1, 1].
27
+ if model_type == "original_vit":
28
+ image = rescale_layer(image)
29
+
30
+ # Resize the image using bicubic interpolation.
31
+ resize_size = int((256 / 224) * size)
32
+ image = tf.image.resize(
33
+ image,
34
+ (resize_size, resize_size),
35
+ method="bicubic"
36
+ )
37
+
38
+ # Crop the image.
39
+ image = crop_layer(image)
40
+
41
+ # If model type is DeiT or DINO normalize the image.
42
+ if model_type != "original_vit":
43
+ image = norm_layer(image)
44
+
45
+ return image.numpy()
46
+
47
+
48
+ def load_image_from_url(url, model_type):
49
+ # Credit: Willi Gierke
50
+ response = requests.get(url)
51
+ image = Image.open(BytesIO(response.content))
52
+ preprocessed_image = preprocess_image(image, model_type)
53
+ return image, preprocessed_image