Spaces:
Runtime error
Runtime error
import firebase_admin | |
from firebase_admin import credentials | |
from firebase_admin import firestore | |
import io | |
from fastapi import FastAPI, File, UploadFile | |
from werkzeug.utils import secure_filename | |
import speech_recognition as sr | |
import subprocess | |
import os | |
import requests | |
import random | |
import pandas as pd | |
from pydub import AudioSegment | |
from datetime import datetime | |
from datetime import date | |
import numpy as np | |
from sklearn.ensemble import RandomForestRegressor | |
import shutil | |
import json | |
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
from pydantic import BaseModel | |
from typing import Annotated | |
# from transformers import BertTokenizerFast, EncoderDecoderModel | |
import torch | |
import re | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
from fastapi import Form | |
class Query(BaseModel): | |
text: str | |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) | |
model_name = "JulesBelveze/t5-small-headline-generator" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
from fastapi import FastAPI, Request, Depends, UploadFile, File | |
from fastapi.exceptions import HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse | |
# now = datetime.now() | |
# UPLOAD_FOLDER = '/files' | |
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', | |
# 'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'} | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=['*'], | |
allow_credentials=True, | |
allow_methods=['*'], | |
allow_headers=['*'], | |
) | |
# cred = credentials.Certificate('key.json') | |
# app1 = firebase_admin.initialize_app(cred) | |
# db = firestore.client() | |
# data_frame = pd.read_csv('data.csv') | |
async def startup_event(): | |
print("on startup") | |
async def get_answer(q: Query ): | |
long_text = q.text | |
input_ids = tokenizer( | |
[WHITESPACE_HANDLER(long_text)], | |
return_tensors="pt", | |
padding="max_length", | |
truncation=True, | |
max_length=384 | |
)["input_ids"] | |
output_ids = model.generate( | |
input_ids=input_ids, | |
max_length=84, | |
no_repeat_ngram_size=2, | |
num_beams=4 | |
)[0] | |
summary = tokenizer.decode( | |
output_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
) | |
return summary | |
return "hello" | |