Spaces:
Runtime error
Runtime error
File size: 6,351 Bytes
cbcb207 abf7a8d cbcb207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import io
import streamlit as st
import numpy as np
from src.utils import utils
import PIL.Image as Image
from src.reconstruct_image_from_representation import reconstruct_image_from_representation
from src.neural_style_transfer import neural_style_transfer
st.set_page_config(
page_title="Neural Style Transfer Video Generation of image reconstruction",
page_icon="\u2712",
layout="wide",
initial_sidebar_state="expanded",
)
st.header("Neural Style Transfer Video Generation yoo")
# Sidebar
st.sidebar.header("Neural Style Transfer Video Generation")
with st.sidebar.expander('About the app'):
st.write("""
Use this application to play with the Neural Style Transfer
by generating video of optimizer
""")
# Reconstruct or Transfer
with st.sidebar.container():
st.sidebar.subheader("Reconstruct or Transfer")
Type = st.sidebar.selectbox("Do you want to reconstruct or transfer",
["Reconstruct", "Transfer"])
utils.yamlSet('type', Type)
# Optimizer
with st.sidebar.container():
st.sidebar.subheader("Optimizer")
optimizer = st.sidebar.selectbox("Choose Optimizer", ["Adam", "LBFGS"])
utils.yamlSet('optimizer', optimizer)
iterations = st.sidebar.slider("Iterations", 10, 3000)
utils.yamlSet('iterations', iterations)
if optimizer == "Adam":
learning_rate = st.sidebar.slider("Learning Rate (100\u03BB)", 0.01,
90.0)
utils.yamlSet('learning_rate', learning_rate)
st.sidebar.write("\u03BB = ", learning_rate / 100.0)
# Reconstruction
if Type == "Reconstruct":
with st.sidebar.container():
st.sidebar.subheader("Reconstruction")
reconstruct = st.sidebar.selectbox("Reconstruct which image",
('Content', 'Style'))
utils.yamlSet('reconstruct', reconstruct)
# Visualization
with st.sidebar.container():
st.sidebar.subheader("Visualization")
visualize = st.sidebar.selectbox(
"Do you want to visualize feature maps of reconstruct images",
("Yes", "No"))
utils.yamlSet('visualize', visualize)
# Model
with st.sidebar.container():
st.sidebar.subheader("Model")
model = st.sidebar.selectbox("Choose Model",
("VGG16", "VGG16-Experimental"))
utils.yamlSet('model', model)
# # use layer
# if model == "VGG19":
# with st.sidebar.container():
# st.sidebar.subheader("Layer Type")
# use = st.sidebar.selectbox("Which type of layer you want to use",
# ("convolution", "relu"))
# Init Image
if Type == "Transfer":
with st.sidebar.container():
st.sidebar.subheader("Init Image")
initImage = st.sidebar.selectbox(
"Init Image",
('Gaussian Noise Image', 'White Noise Image', 'Content', 'Style'))
utils.yamlSet('initImage', initImage)
# Content Layer
with st.sidebar.container():
st.sidebar.subheader("Content Layer")
if model == "VGG16-Experimental":
contentLayer = st.sidebar.selectbox(
"Content Layer", ('relu1_1', 'relu2_1', 'relu2_2', 'relu3_1',
'relu3_2', 'relu4_1', 'relu4_3', 'relu5_1'))
elif model == "VGG16":
contentLayer = st.sidebar.selectbox(
"Content Layer", ('relu1_2', 'relu2_2', 'relu3_3', 'relu4_3'))
utils.yamlSet('contentLayer', contentLayer)
# elif model == "VGG19" and use == "relu":
# st.sidebar.selectbox("Content Layer",
# ('relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1'))
# elif model == "VGG19" and use == "convolution":
# st.sidebar.selectbox("Content Layer",
# ('conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv4_2',
# 'conv5_1'))
# Height
with st.sidebar.container():
st.sidebar.subheader("Height")
height = st.sidebar.slider("Height", 100, 6000, 400)
utils.yamlSet('height', height)
# Representation saving frequency
with st.sidebar.container():
st.sidebar.subheader("Representation Saving Frequency")
reprSavFreq = st.sidebar.slider(
"After how many iterations you want to save representation for "
"video generation", 1, 100)
utils.yamlSet('reprSavFreq', reprSavFreq)
if Type == "Transfer":
# Content Weight
col1, col2 = st.columns([0.85, 0.15])
with col1:
contentWeight = st.slider("Content Weight (1000\u03B1)", 0.01, 1000.0)
utils.yamlSet('contentWeight', contentWeight)
with col2:
st.write("\u03B1 = ", contentWeight / 1000.0)
# Style Weight
col1, col2 = st.columns([0.85, 0.15])
with col1:
styleWeight = st.slider("Style Weight (1000\u03B2)", 0.01, 1000.0)
utils.yamlSet('styleWeight', styleWeight)
with col2:
st.write("\u03B2 = ", styleWeight / 1000.0)
# Total Variation Weight
col1, col2 = st.columns([0.85, 0.15])
with col1:
totalVariationWeight = st.slider("Total Variation Weight (1000\u03B3)",
0.01, 1000.0)
utils.yamlSet('totalVariationWeight', totalVariationWeight)
with col2:
st.write("\u03B3 = ", totalVariationWeight / 1000.0)
# File upload
col1, col2 = st.columns([0.5, 0.5])
with col1:
contentImage = st.file_uploader('Choose Content Image', type=['jpg'])
if contentImage:
st.image(contentImage)
contentNumpy = np.asarray(
Image.open(io.BytesIO(contentImage.getvalue())))
contentPath = utils.save_numpy_array_as_jpg(contentNumpy, "content")
utils.yamlSet('contentPath', contentPath)
with col2:
styleImage = st.file_uploader('Choose Style Image', type=['jpg'])
if styleImage:
st.image(styleImage)
styleNumpy = np.asarray(Image.open(io.BytesIO(styleImage.getvalue())))
stylePath = utils.save_numpy_array_as_jpg(styleNumpy, "style")
utils.yamlSet("stylePath", stylePath)
submit = st.button("Submit")
if submit:
utils.clearDir()
if Type == "Reconstruct":
reconstruct_image_from_representation()
elif Type == "Transfer":
neural_style_transfer()
video_file = open("src/data/transfer/out.mp4", "rb")
video_bytes = video_file.read()
st.video(video_bytes)
|