prithivMLmods's picture
Update app.py
16a81cd verified
raw
history blame
6.23 kB
#!/usr/bin/env python
#patch 0.01
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
#DESCRIPTIONx = """## STABLE INSTRUCT 📦
#"""
examples = [
["assets/4.png", "Change the color of the jacket to white."],
["assets/1.png", "Change the picture to black and white."],
["assets/2.png", "Add the chocolate topping to the ice cream."],
["assets/3.png", "Make the burger look spicy."],
]
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
DESCRIPTION = """
"""
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def img2img_generate(
prompt: str,
init_image: gr.Image,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
guidance_scale: float = 7,
randomize_seed: bool = False,
num_inference_steps=30,
strength: float = 0.8,
NUM_IMAGES_PER_PROMPT=1,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
pipe.to(device)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
init_image = init_image.resize((768, 768))
output = pipe(
prompt=prompt,
image=init_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
strength=strength,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
output_type="pil",
).images
return output
css = '''
.gradio-container{max-width: 800px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
# gr.Markdown(DESCRIPTIONx)
with gr.Group():
with gr.Row(equal_height=True):
with gr.Column(scale=1):
img2img_prompt = gr.Text(
label="Instruct",
show_label=False,
max_lines=1,
placeholder="Enter your instruction",
container=False,
)
init_image = gr.Image(label="Image", type="pil")
with gr.Row():
img2img_run_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
img2img_output = gr.Gallery(label="Result", elem_id="gallery")
with gr.Accordion("Advanced options", open=False, visible=False):
with gr.Row():
img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
img2img_negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
visible=True,
)
img2img_seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
img2img_steps = gr.Slider(
label="Steps",
minimum=0,
maximum=60,
step=1,
value=25,
)
img2img_number_image = gr.Slider(
label="No.of.Images",
minimum=1,
maximum=4,
step=1,
value=1,
)
img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
img2img_guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=5.0,
)
strength = gr.Slider(label="Confidence", minimum=0.0, maximum=1.0, step=0.01, value=0.8)
gr.Examples(
examples=examples,
inputs=[init_image, img2img_prompt],
outputs=img2img_output,
fn=img2img_generate,
cache_examples=CACHE_EXAMPLES,
)
img2img_use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=img2img_use_negative_prompt,
outputs=img2img_negative_prompt,
api_name=False,
)
gr.on(
triggers=[
img2img_prompt.submit,
img2img_negative_prompt.submit,
img2img_run_button.click,
],
fn=img2img_generate,
inputs=[
img2img_prompt,
init_image,
img2img_negative_prompt,
img2img_use_negative_prompt,
img2img_seed,
img2img_guidance_scale,
img2img_randomize_seed,
img2img_steps,
strength,
img2img_number_image,
],
outputs=[img2img_output],
api_name="image-to-image",
)
#gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards")
if __name__ == "__main__":
demo.queue().launch(show_api=False, debug=False)