Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""gen ai project f.ipynb
|
3 |
-
|
4 |
Automatically generated by Colab.
|
5 |
-
|
6 |
Original file is located at
|
7 |
https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
|
8 |
"""
|
@@ -20,9 +18,13 @@ if hf_token:
|
|
20 |
else:
|
21 |
raise ValueError("Hugging Face token not found in environment variables.")
|
22 |
|
23 |
-
|
24 |
# Import necessary libraries
|
25 |
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Load the translation model and tokenizer
|
28 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
@@ -35,31 +37,19 @@ translator = pipeline("translation", model=model, tokenizer=tokenizer)
|
|
35 |
# Function for translation
|
36 |
def translate_text(tamil_text):
|
37 |
try:
|
38 |
-
# Perform translation
|
39 |
translation = translator(tamil_text, max_length=40)
|
40 |
translated_text = translation[0]['translation_text']
|
41 |
return translated_text
|
42 |
except Exception as e:
|
43 |
return f"An error occurred: {str(e)}"
|
44 |
|
45 |
-
# Test translation with example Tamil text
|
46 |
-
tamil_text = "மழையுடன் ஒரு பூ" # "A flower with rain"
|
47 |
-
translated_text = translate_text(tamil_text)
|
48 |
-
print(f"Translated Text: {translated_text}")
|
49 |
-
|
50 |
-
import requests
|
51 |
-
import io
|
52 |
-
from PIL import Image
|
53 |
-
import matplotlib.pyplot as plt
|
54 |
-
|
55 |
# API credentials and endpoint
|
56 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
57 |
-
headers = {"Authorization": "Bearer
|
58 |
|
59 |
# Function to send payload and generate image
|
60 |
def generate_image(prompt):
|
61 |
try:
|
62 |
-
# Send request to API
|
63 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
64 |
|
65 |
# Check if the response is successful
|
@@ -73,13 +63,15 @@ def generate_image(prompt):
|
|
73 |
return image
|
74 |
except Exception as e:
|
75 |
print(f"Error opening image: {e}")
|
|
|
76 |
else:
|
77 |
-
# Handle non-200 responses
|
78 |
print(f"Failed to get image: Status code {response.status_code}")
|
79 |
print("Response content:", response.text) # Print response for debugging
|
|
|
80 |
|
81 |
except Exception as e:
|
82 |
print(f"An error occurred: {e}")
|
|
|
83 |
|
84 |
# Display image
|
85 |
def show_image(image):
|
@@ -90,16 +82,8 @@ def show_image(image):
|
|
90 |
else:
|
91 |
print("No image to display")
|
92 |
|
93 |
-
# Test the function with a prompt
|
94 |
-
prompt = "A flower with rain"
|
95 |
-
image = generate_image(prompt)
|
96 |
-
|
97 |
-
# Display the generated image
|
98 |
-
show_image(image)
|
99 |
-
|
100 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
101 |
-
|
102 |
# Load GPT-Neo model for creative text generation
|
|
|
103 |
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
104 |
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
105 |
|
@@ -110,8 +94,6 @@ def generate_creative_text(translated_text):
|
|
110 |
creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
|
111 |
return creative_text
|
112 |
|
113 |
-
import gradio as gr
|
114 |
-
|
115 |
# Function to handle the full workflow
|
116 |
def translate_generate_image_and_text(tamil_text):
|
117 |
# Step 1: Translate Tamil text to English
|
@@ -135,4 +117,4 @@ interface = gr.Interface(
|
|
135 |
)
|
136 |
|
137 |
# Launch Gradio app
|
138 |
-
interface.launch()
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""gen ai project f.ipynb
|
|
|
3 |
Automatically generated by Colab.
|
|
|
4 |
Original file is located at
|
5 |
https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
|
6 |
"""
|
|
|
18 |
else:
|
19 |
raise ValueError("Hugging Face token not found in environment variables.")
|
20 |
|
|
|
21 |
# Import necessary libraries
|
22 |
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
23 |
+
import requests
|
24 |
+
import io
|
25 |
+
from PIL import Image
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import gradio as gr
|
28 |
|
29 |
# Load the translation model and tokenizer
|
30 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
|
|
37 |
# Function for translation
|
38 |
def translate_text(tamil_text):
|
39 |
try:
|
|
|
40 |
translation = translator(tamil_text, max_length=40)
|
41 |
translated_text = translation[0]['translation_text']
|
42 |
return translated_text
|
43 |
except Exception as e:
|
44 |
return f"An error occurred: {str(e)}"
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# API credentials and endpoint
|
47 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
48 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
49 |
|
50 |
# Function to send payload and generate image
|
51 |
def generate_image(prompt):
|
52 |
try:
|
|
|
53 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
54 |
|
55 |
# Check if the response is successful
|
|
|
63 |
return image
|
64 |
except Exception as e:
|
65 |
print(f"Error opening image: {e}")
|
66 |
+
return None
|
67 |
else:
|
|
|
68 |
print(f"Failed to get image: Status code {response.status_code}")
|
69 |
print("Response content:", response.text) # Print response for debugging
|
70 |
+
return None
|
71 |
|
72 |
except Exception as e:
|
73 |
print(f"An error occurred: {e}")
|
74 |
+
return None
|
75 |
|
76 |
# Display image
|
77 |
def show_image(image):
|
|
|
82 |
else:
|
83 |
print("No image to display")
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# Load GPT-Neo model for creative text generation
|
86 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
87 |
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
88 |
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
89 |
|
|
|
94 |
creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
|
95 |
return creative_text
|
96 |
|
|
|
|
|
97 |
# Function to handle the full workflow
|
98 |
def translate_generate_image_and_text(tamil_text):
|
99 |
# Step 1: Translate Tamil text to English
|
|
|
117 |
)
|
118 |
|
119 |
# Launch Gradio app
|
120 |
+
interface.launch()
|