Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import io
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import MarianMTModel, MarianTokenizer
|
6 |
+
import os
|
7 |
+
|
8 |
+
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
9 |
+
model = MarianMTModel.from_pretrained(model_name)
|
10 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
11 |
+
|
12 |
+
def translate_text(tamil_text):
|
13 |
+
inputs = tokenizer(tamil_text, return_tensors="pt")
|
14 |
+
translated_tokens = model.generate(**inputs)
|
15 |
+
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
16 |
+
return translation
|
17 |
+
|
18 |
+
def query_gemini_api(translated_text, gemini_api_key):
|
19 |
+
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
20 |
+
headers = {"Content-Type": "application/json"}
|
21 |
+
prompt = f"Based on the following sentence, continue the story: {translated_text}"
|
22 |
+
payload = {
|
23 |
+
"contents": [{"parts": [{"text": prompt}]}]
|
24 |
+
}
|
25 |
+
response = requests.post(f"{url}?key={gemini_api_key}", headers=headers, json=payload)
|
26 |
+
|
27 |
+
if response.status_code == 200:
|
28 |
+
result = response.json()
|
29 |
+
creative_text = result['candidates'][0]['content']['parts'][0]['text']
|
30 |
+
return creative_text
|
31 |
+
else:
|
32 |
+
return f"Error: {response.status_code} - {response.text}"
|
33 |
+
|
34 |
+
def query_image(payload):
|
35 |
+
huggingface_api_key = os.getenv('HUGGINGFACE_API_KEY')
|
36 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
37 |
+
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
38 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
39 |
+
return response.content
|
40 |
+
|
41 |
+
def process_input(tamil_input):
|
42 |
+
gemini_api_key = os.getenv('GEMINI_API_KEY')
|
43 |
+
translated_output = translate_text(tamil_input)
|
44 |
+
creative_output = query_gemini_api(translated_output, gemini_api_key)
|
45 |
+
image_bytes = query_image({"inputs": translated_output})
|
46 |
+
image = Image.open(io.BytesIO(image_bytes))
|
47 |
+
return translated_output, creative_output, image
|
48 |
+
|
49 |
+
|
50 |
+
iface = gr.Interface(
|
51 |
+
fn=process_input,
|
52 |
+
inputs=[gr.Textbox(label="Input Tamil Text")],
|
53 |
+
outputs=[
|
54 |
+
gr.Textbox(label="Translated Text"),
|
55 |
+
gr.Textbox(label="Creative Text"),
|
56 |
+
gr.Image(label="Generated Image")
|
57 |
+
],
|
58 |
+
title="TRANSART",
|
59 |
+
description="Enter Tamil text to translate to English and generate an image based on the translated text."
|
60 |
+
)
|
61 |
+
|
62 |
+
interface.launch()
|