Spaces:
Running
Running
Upload 4 files
Browse files- app.py +57 -0
- car_name_model.pkl +3 -0
- label_encoder.pkl +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
|
6 |
+
# Load the model and label encoder
|
7 |
+
def load_model():
|
8 |
+
with open("car_name_model.pkl", "rb") as model_file:
|
9 |
+
model = pickle.load(model_file)
|
10 |
+
with open("label_encoder.pkl", "rb") as encoder_file:
|
11 |
+
label_encoder = pickle.load(encoder_file)
|
12 |
+
return model, label_encoder
|
13 |
+
|
14 |
+
# Function to predict car name
|
15 |
+
def predict_car_name(input_data):
|
16 |
+
model, label_encoder = load_model()
|
17 |
+
prediction = model.predict(input_data)
|
18 |
+
return label_encoder.inverse_transform(prediction)[0]
|
19 |
+
|
20 |
+
# Streamlit UI
|
21 |
+
def main():
|
22 |
+
st.title("Car Name Prediction")
|
23 |
+
|
24 |
+
# Take dynamic input from the user using sliders and drop-down boxes
|
25 |
+
|
26 |
+
mpg = st.slider("MPG", min_value=0.0, max_value=100.0, value=17.0, step=0.1)
|
27 |
+
cylinders = st.selectbox("Cylinders", [4, 6, 8], index=1)
|
28 |
+
displacement = st.slider("Displacement", min_value=50.0, max_value=500.0, value=302.0, step=0.1)
|
29 |
+
horsepower = st.slider("Horsepower", min_value=50.0, max_value=500.0, value=140.0, step=1.0)
|
30 |
+
weight = st.slider("Weight", min_value=1000, max_value=5000, value=3449, step=1)
|
31 |
+
acceleration = st.slider("Acceleration", min_value=0.0, max_value=50.0, value=10.5, step=0.1)
|
32 |
+
model_year = st.slider("Model Year", min_value=60, max_value=80, value=70, step=1)
|
33 |
+
origin = st.selectbox("Origin", ["USA", "Europe", "Japan"], index=0)
|
34 |
+
|
35 |
+
# Convert 'origin' to numeric encoding
|
36 |
+
origin_map = {"USA": 0, "Europe": 1, "Japan": 2}
|
37 |
+
origin_encoded = origin_map[origin]
|
38 |
+
|
39 |
+
# Prepare input data as a DataFrame
|
40 |
+
input_data = pd.DataFrame({
|
41 |
+
"mpg": [mpg],
|
42 |
+
"cylinders": [cylinders],
|
43 |
+
"displacement": [displacement],
|
44 |
+
"horsepower": [horsepower],
|
45 |
+
"weight": [weight],
|
46 |
+
"acceleration": [acceleration],
|
47 |
+
"model_year": [model_year],
|
48 |
+
"origin": [origin_encoded]
|
49 |
+
})
|
50 |
+
|
51 |
+
# Predict and display the result
|
52 |
+
if st.button("Predict Car Name"):
|
53 |
+
predicted_name = predict_car_name(input_data)
|
54 |
+
st.write(f"The predicted car name is: {predicted_name}")
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main()
|
car_name_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18a37ee1e8463a17c526793d630256890e41b7b582584d38bd184aaf82d4a80f
|
3 |
+
size 76333041
|
label_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fe548b182d274dd5c88fbedd7f3fb2ff030c576756e1dfe693cb55d4692a4f2
|
3 |
+
size 6236
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.14.0
|
2 |
+
pandas==1.5.3
|
3 |
+
scikit-learn==1.2.0
|