pranit144 commited on
Commit
56df7ae
·
verified ·
1 Parent(s): 43c5c8c

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +57 -0
  2. car_name_model.pkl +3 -0
  3. label_encoder.pkl +3 -0
  4. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import pickle
4
+ from sklearn.ensemble import RandomForestClassifier
5
+
6
+ # Load the model and label encoder
7
+ def load_model():
8
+ with open("car_name_model.pkl", "rb") as model_file:
9
+ model = pickle.load(model_file)
10
+ with open("label_encoder.pkl", "rb") as encoder_file:
11
+ label_encoder = pickle.load(encoder_file)
12
+ return model, label_encoder
13
+
14
+ # Function to predict car name
15
+ def predict_car_name(input_data):
16
+ model, label_encoder = load_model()
17
+ prediction = model.predict(input_data)
18
+ return label_encoder.inverse_transform(prediction)[0]
19
+
20
+ # Streamlit UI
21
+ def main():
22
+ st.title("Car Name Prediction")
23
+
24
+ # Take dynamic input from the user using sliders and drop-down boxes
25
+
26
+ mpg = st.slider("MPG", min_value=0.0, max_value=100.0, value=17.0, step=0.1)
27
+ cylinders = st.selectbox("Cylinders", [4, 6, 8], index=1)
28
+ displacement = st.slider("Displacement", min_value=50.0, max_value=500.0, value=302.0, step=0.1)
29
+ horsepower = st.slider("Horsepower", min_value=50.0, max_value=500.0, value=140.0, step=1.0)
30
+ weight = st.slider("Weight", min_value=1000, max_value=5000, value=3449, step=1)
31
+ acceleration = st.slider("Acceleration", min_value=0.0, max_value=50.0, value=10.5, step=0.1)
32
+ model_year = st.slider("Model Year", min_value=60, max_value=80, value=70, step=1)
33
+ origin = st.selectbox("Origin", ["USA", "Europe", "Japan"], index=0)
34
+
35
+ # Convert 'origin' to numeric encoding
36
+ origin_map = {"USA": 0, "Europe": 1, "Japan": 2}
37
+ origin_encoded = origin_map[origin]
38
+
39
+ # Prepare input data as a DataFrame
40
+ input_data = pd.DataFrame({
41
+ "mpg": [mpg],
42
+ "cylinders": [cylinders],
43
+ "displacement": [displacement],
44
+ "horsepower": [horsepower],
45
+ "weight": [weight],
46
+ "acceleration": [acceleration],
47
+ "model_year": [model_year],
48
+ "origin": [origin_encoded]
49
+ })
50
+
51
+ # Predict and display the result
52
+ if st.button("Predict Car Name"):
53
+ predicted_name = predict_car_name(input_data)
54
+ st.write(f"The predicted car name is: {predicted_name}")
55
+
56
+ if __name__ == "__main__":
57
+ main()
car_name_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18a37ee1e8463a17c526793d630256890e41b7b582584d38bd184aaf82d4a80f
3
+ size 76333041
label_encoder.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fe548b182d274dd5c88fbedd7f3fb2ff030c576756e1dfe693cb55d4692a4f2
3
+ size 6236
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit==1.14.0
2
+ pandas==1.5.3
3
+ scikit-learn==1.2.0