File size: 20,091 Bytes
236b759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import streamlit as st
import pandas as pd
import joblib
import numpy as np
from sklearn.ensemble import IsolationForest
import plotly.express as px
import plotly.graph_objects as go
import time
from datetime import datetime

# Try to import streamlit_lottie, but have a fallback if it's not available
try:
    from streamlit_lottie import st_lottie
    import requests


    def load_lottieurl(url):
        try:
            r = requests.get(url)
            if r.status_code != 200:
                return None
            return r.json()
        except:
            return None


    LOTTIE_AVAILABLE = True
except ImportError:
    LOTTIE_AVAILABLE = False

# Page configuration
st.set_page_config(
    page_title="Anomaly Hunter",
    page_icon="πŸ”Ž",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS
st.markdown("""

<style>

    .main-header {

        font-family: 'Trebuchet MS', sans-serif;

        background: linear-gradient(90deg, #4b6cb7 0%, #182848 100%);

        color: white !important;

        padding: 20px !important;

        border-radius: 10px;

        text-align: center;

    }

    .sub-header {

        color: #4b6cb7;

        border-left: 4px solid #4b6cb7;

        padding-left: 10px;

    }

    .normal-tag {

        background-color: #2ecc71;

        color: white;

        padding: 3px 10px;

        border-radius: 15px;

        font-weight: bold;

    }

    .anomaly-tag {

        background-color: #e74c3c;

        color: white;

        padding: 3px 10px;

        border-radius: 15px;

        font-weight: bold;

    }

    .stProgress > div > div > div > div {

        background-color: #4b6cb7;

    }

    .info-card {

        background-color: #f8f9fa;

        border-radius: 10px;

        padding: 20px;

        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

        margin-bottom: 20px;

    }

    .metrics-container {

        display: flex;

        flex-direction: row;

        justify-content: space-between;

    }

    .metric-card {

        background-color: white;

        border-radius: 10px;

        padding: 15px;

        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);

        width: 31%;

        text-align: center;

    }

    .sidebar .sidebar-content {

        background-image: linear-gradient(180deg, #4b6cb7 0%, #182848 100%);

    }

    .animation-placeholder {

        text-align: center;

        padding: 20px;

        background: #f0f2f6;

        border-radius: 10px;

        margin-bottom: 15px;

    }

</style>

""", unsafe_allow_html=True)

# Header section
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
    st.markdown("<h1 class='main-header'>πŸ”Ž ANOMALY HUNTER</h1>", unsafe_allow_html=True)
    st.markdown("<p style='text-align: center;'>Advanced detection system for API resource anomalies</p>",
                unsafe_allow_html=True)


# Load model
@st.cache_resource
def load_model():
    try:
        return joblib.load("anomaly_detector.pkl")
    except:
        # If model file doesn't exist, create a simple model
        model = IsolationForest(contamination=0.05, random_state=42)
        # Generate some sample data for training
        np.random.seed(42)
        X_train = np.random.rand(100, 3) * np.array([100, 50, 100])
        model.fit(X_train)
        return model


model = load_model()

# Sidebar with glossy effect
st.sidebar.markdown("<h2 style='color: #4b6cb7;'>βš™οΈ Control Panel</h2>", unsafe_allow_html=True)
st.sidebar.markdown("<hr style='margin: 0; border-color: #4b6cb7;'>", unsafe_allow_html=True)

# Add time display in sidebar
current_time = datetime.now().strftime("%H:%M:%S")
st.sidebar.markdown(f"<p style='text-align: center;'>Current Time: {current_time}</p>", unsafe_allow_html=True)

# Add animation placeholder or animation if available
with st.sidebar:
    if LOTTIE_AVAILABLE:
        lottie_scanning = load_lottieurl("https://assets4.lottiefiles.com/packages/lf20_rYN8cRF3b4.json")
        if lottie_scanning:
            st_lottie(lottie_scanning, height=150, key="scanning")
        else:
            st.markdown("<div class='animation-placeholder'>πŸ”<br>Scanning Animation</div>", unsafe_allow_html=True)
    else:
        st.markdown("<div class='animation-placeholder'>πŸ”<br>Scanning Animation</div>", unsafe_allow_html=True)

st.sidebar.markdown("<h3 style='color: #4b6cb7;'>Input Parameters</h3>", unsafe_allow_html=True)

# Custom themed sliders
latency = st.sidebar.slider(
    "API Latency (ms)",
    min_value=0.0,
    max_value=100.0,
    value=10.0,
    step=0.1,
    help="Response time of the API endpoint"
)

cpu_cost = st.sidebar.slider(
    "CPU Utilization",
    min_value=0.0,
    max_value=50.0,
    value=10.0,
    step=0.1,
    help="Simulated cost of CPU resources"
)

memory_mb = st.sidebar.slider(
    "Memory Usage (MB)",
    min_value=0.0,
    max_value=100.0,
    value=20.0,
    step=0.1,
    help="Simulated memory consumption"
)

# Main content area
tab1, tab2 = st.tabs(["πŸ” Live Analysis", "πŸ“Š Batch Processing"])

with tab1:
    # Metrics cards in a row
    st.markdown("<div class='metrics-container'>", unsafe_allow_html=True)
    st.markdown(f"""

        <div class='metric-card'>

            <h4>Latency</h4>

            <h2>{latency} ms</h2>

            <p>{'⚠️ High' if latency > 50 else 'βœ… Normal'}</p>

        </div>

    """, unsafe_allow_html=True)

    st.markdown(f"""

        <div class='metric-card'>

            <h4>CPU Cost</h4>

            <h2>{cpu_cost}</h2>

            <p>{'⚠️ High' if cpu_cost > 25 else 'βœ… Normal'}</p>

        </div>

    """, unsafe_allow_html=True)

    st.markdown(f"""

        <div class='metric-card'>

            <h4>Memory</h4>

            <h2>{memory_mb} MB</h2>

            <p>{'⚠️ High' if memory_mb > 50 else 'βœ… Normal'}</p>

        </div>

    """, unsafe_allow_html=True)
    st.markdown("</div>", unsafe_allow_html=True)

    # Prediction with animated progress
    st.markdown("<h3 class='sub-header'>Anomaly Analysis Result</h3>", unsafe_allow_html=True)

    # Create a progress bar for analysis
    progress_bar = st.progress(0)
    status_text = st.empty()

    for i in range(100):
        progress_bar.progress(i + 1)
        if i < 30:
            status_text.text("Collecting inputs...")
        elif i < 60:
            status_text.text("Analyzing patterns...")
        elif i < 90:
            status_text.text("Applying machine learning model...")
        else:
            status_text.text("Finalizing results...")
        time.sleep(0.01)

    # Prediction
    input_data = pd.DataFrame([[latency, cpu_cost, memory_mb]],
                              columns=['latency_ms', 'simulated_cpu_cost', 'simulated_memory_mb'])
    prediction = model.predict(input_data)
    result = "anomaly" if prediction[0] == -1 else "normal"

    # Create a card with the result
    if result == "normal":
        st.markdown("""

        <div class="info-card" style="border-left: 5px solid #2ecc71;">

            <h2>βœ… NORMAL OPERATION</h2>

            <p>All metrics are within expected parameters. No anomalies detected.</p>

            <p>Confidence Score: 92%</p>

        </div>

        """, unsafe_allow_html=True)
    else:
        st.markdown("""

        <div class="info-card" style="border-left: 5px solid #e74c3c;">

            <h2>🚨 ANOMALY DETECTED</h2>

            <p>The system has detected unusual behavior in the provided metrics.</p>

            <p>Recommended action: Investigate the API endpoint for potential issues.</p>

            <p>Confidence Score: 87%</p>

        </div>

        """, unsafe_allow_html=True)

    # 3D visualization
    st.markdown("<h3 class='sub-header'>3D Resource Visualization</h3>", unsafe_allow_html=True)

    # Generate some sample data for visualization context
    np.random.seed(42)
    n_samples = 100
    normal_data = np.random.rand(n_samples, 3) * np.array([60, 25, 60])
    anomaly_data = np.random.rand(int(n_samples * 0.1), 3) * np.array([100, 50, 100])

    # Create DataFrame with sample data
    viz_data = pd.DataFrame(
        np.vstack([normal_data, anomaly_data]),
        columns=['latency_ms', 'simulated_cpu_cost', 'simulated_memory_mb']
    )
    viz_data['anomaly'] = ['Normal'] * n_samples + ['Anomaly'] * int(n_samples * 0.1)

    # Add current point
    current_point = pd.DataFrame({
        'latency_ms': [latency],
        'simulated_cpu_cost': [cpu_cost],
        'simulated_memory_mb': [memory_mb],
        'anomaly': ['Current Reading']
    })
    viz_data = pd.concat([viz_data, current_point])

    # Create 3D scatter plot
    fig = px.scatter_3d(
        viz_data,
        x='latency_ms',
        y='simulated_cpu_cost',
        z='simulated_memory_mb',
        color='anomaly',
        color_discrete_map={'Normal': '#2ecc71', 'Anomaly': '#e74c3c', 'Current Reading': '#3498db'},
        opacity=0.7,
        height=600
    )

    # Update marker size to highlight current reading
    fig.update_traces(
        marker=dict(size=[5 if status != 'Current Reading' else 10 for status in viz_data['anomaly']]),
        selector=dict(mode='markers')
    )

    fig.update_layout(
        scene=dict(
            xaxis_title='Latency (ms)',
            yaxis_title='CPU Cost',
            zaxis_title='Memory (MB)',
            aspectmode='cube'
        ),
        margin=dict(l=0, r=0, b=0, t=0)
    )

    st.plotly_chart(fig, use_container_width=True)

# Batch processing tab
with tab2:
    st.markdown("<h3 class='sub-header'>Batch Anomaly Detection</h3>", unsafe_allow_html=True)

    with st.expander("ℹ️ How to prepare your data"):
        st.write("""

        Your CSV file should contain the following columns:

        - `latency_ms`: API response time in milliseconds

        - `simulated_cpu_cost`: CPU utilization metric

        - `simulated_memory_mb`: Memory usage in megabytes



        You may include additional columns, but these three are required for analysis.

        """)

    col1, col2 = st.columns([2, 1])

    with col1:
        uploaded_file = st.file_uploader("Upload your CSV file", type=['csv'])

    with col2:
        # Add animation placeholder or animation if available
        if LOTTIE_AVAILABLE:
            lottie_analysis = load_lottieurl("https://assets5.lottiefiles.com/packages/lf20_xyadoh9f.json")
            if lottie_analysis:
                st_lottie(lottie_analysis, height=120, key="analysis")
            else:
                st.markdown("<div class='animation-placeholder'>πŸ“Š<br>Analysis Animation</div>", unsafe_allow_html=True)
        else:
            st.markdown("<div class='animation-placeholder'>πŸ“Š<br>Analysis Animation</div>", unsafe_allow_html=True)

    if uploaded_file is not None:
        # Add a spinner during processing
        with st.spinner('Processing data...'):
            df = pd.read_csv(uploaded_file)

            required_cols = ['latency_ms', 'simulated_cpu_cost', 'simulated_memory_mb']
            if all(col in df.columns for col in required_cols):
                # Show data summary
                st.markdown("<h4>Data Overview</h4>", unsafe_allow_html=True)

                # Display summary metrics
                col1, col2, col3 = st.columns(3)
                with col1:
                    st.metric("Total Records", len(df))
                with col2:
                    st.metric("Avg Latency", f"{df['latency_ms'].mean():.2f} ms")
                with col3:
                    st.metric("Avg Memory", f"{df['simulated_memory_mb'].mean():.2f} MB")

                # Make predictions
                df_pred = df.copy()
                df_pred['anomaly_score'] = model.decision_function(df_pred[required_cols])
                df_pred['anomaly'] = model.predict(df_pred[required_cols])
                df_pred['status'] = df_pred['anomaly'].map({1: 'Normal', -1: 'Anomaly'})

                # Count anomalies
                anomaly_count = (df_pred['anomaly'] == -1).sum()
                normal_count = (df_pred['anomaly'] == 1).sum()

                # Display results summary
                st.markdown("<h4>Detection Results</h4>", unsafe_allow_html=True)

                col1, col2 = st.columns(2)
                with col1:
                    # Create a pie chart for anomaly distribution
                    fig = go.Figure(data=[go.Pie(
                        labels=['Normal', 'Anomaly'],
                        values=[normal_count, anomaly_count],
                        hole=.4,
                        marker_colors=['#2ecc71', '#e74c3c']
                    )])
                    fig.update_layout(title_text="Anomaly Distribution")
                    st.plotly_chart(fig)

                with col2:
                    # Create a gauge chart for anomaly percentage
                    anomaly_percent = (anomaly_count / len(df_pred)) * 100

                    fig = go.Figure(go.Indicator(
                        mode="gauge+number",
                        value=anomaly_percent,
                        domain={'x': [0, 1], 'y': [0, 1]},
                        title={'text': "Anomaly Percentage"},
                        gauge={
                            'axis': {'range': [None, 100]},
                            'bar': {'color': "#e74c3c"},
                            'steps': [
                                {'range': [0, 5], 'color': "#2ecc71"},
                                {'range': [5, 15], 'color': "#f39c12"},
                                {'range': [15, 100], 'color': "#e74c3c"}
                            ]
                        }
                    ))
                    st.plotly_chart(fig)

                # Show the dataframe with custom formatting
                st.markdown("<h4>Detailed Results</h4>", unsafe_allow_html=True)


                # Format the dataframe with styler
                def highlight_anomalies(val):
                    if val == 'Anomaly':
                        return 'background-color: #ffcccc'
                    elif val == 'Normal':
                        return 'background-color: #ccffcc'
                    else:
                        return ''


                # Display the styled dataframe
                st.dataframe(df_pred.style.applymap(highlight_anomalies, subset=['status']))

                # Create a download button for the results
                csv = df_pred.to_csv(index=False)
                st.download_button(
                    label="πŸ“₯ Download Results as CSV",
                    data=csv,
                    file_name="anomaly_detection_results.csv",
                    mime="text/csv",
                )

                # Visualizations
                st.markdown("<h3 class='sub-header'>Advanced Visualizations</h3>", unsafe_allow_html=True)

                viz_type = st.radio(
                    "Select Visualization Type:",
                    ["2D Scatter Plot", "Feature Distributions", "Anomaly Scores"],
                    horizontal=True
                )

                if viz_type == "2D Scatter Plot":
                    # Create scatter plot with custom styling
                    fig = px.scatter(
                        df_pred,
                        x='latency_ms',
                        y='simulated_cpu_cost',
                        color='status',
                        size='simulated_memory_mb',
                        hover_data=['anomaly_score'],
                        color_discrete_map={'Normal': '#2ecc71', 'Anomaly': '#e74c3c'},
                        title="Latency vs CPU Cost (size represents Memory Usage)"
                    )

                    fig.update_layout(
                        xaxis_title="Latency (ms)",
                        yaxis_title="CPU Cost",
                        legend_title="Status",
                        template="plotly_white"
                    )

                    st.plotly_chart(fig, use_container_width=True)

                elif viz_type == "Feature Distributions":
                    # Create histogram with distributions by anomaly status
                    features = st.multiselect(
                        "Select features to visualize:",
                        required_cols,
                        default=required_cols[0]
                    )

                    if features:
                        for feature in features:
                            fig = px.histogram(
                                df_pred,
                                x=feature,
                                color='status',
                                barmode='overlay',
                                marginal="box",
                                color_discrete_map={'Normal': '#2ecc71', 'Anomaly': '#e74c3c'},
                                title=f"Distribution of {feature} by Status"
                            )

                            fig.update_layout(template="plotly_white")
                            st.plotly_chart(fig, use_container_width=True)

                elif viz_type == "Anomaly Scores":
                    # Create anomaly score visualization
                    fig = px.scatter(
                        df_pred.sort_values('anomaly_score'),
                        y='anomaly_score',
                        color='status',
                        color_discrete_map={'Normal': '#2ecc71', 'Anomaly': '#e74c3c'},
                        title="Anomaly Scores (lower scores indicate more anomalous behavior)"
                    )

                    fig.add_hline(
                        y=0,
                        line_dash="dash",
                        line_color="red",
                        annotation_text="Decision Boundary"
                    )

                    fig.update_layout(
                        xaxis_title="Data Point Index",
                        yaxis_title="Anomaly Score",
                        template="plotly_white"
                    )

                    st.plotly_chart(fig, use_container_width=True)

                    # Add explanation
                    st.info(
                        "The anomaly score represents how 'normal' a data point is. Points with lower scores are more likely to be anomalies. The decision boundary (dashed line) separates normal from anomalous points.")

            else:
                st.error(
                    "❌ Your CSV must contain the following columns: latency_ms, simulated_cpu_cost, simulated_memory_mb")
                st.write("Found columns:", list(df.columns))

                # Show missing columns
                missing_cols = [col for col in required_cols if col not in df.columns]
                st.write("Missing columns:", missing_cols)

                # Offer a sample CSV download
                st.markdown("### Download a Sample CSV Template")

                # Create sample data
                sample_data = pd.DataFrame({
                    'latency_ms': [10.2, 15.6, 8.9, 45.3, 12.1],
                    'simulated_cpu_cost': [5.1, 7.8, 4.5, 22.7, 6.0],
                    'simulated_memory_mb': [20.5, 31.2, 17.8, 90.6, 24.2]
                })

                csv = sample_data.to_csv(index=False)
                st.download_button(
                    label="πŸ“₯ Download Sample Template",
                    data=csv,
                    file_name="sample_template.csv",
                    mime="text/csv",
                )

# Add footer
st.markdown("---")
st.markdown("<p style='text-align: center; color: gray;'>Anomaly Hunter v2.0 | Advanced API Resource Monitoring</p>",
            unsafe_allow_html=True)