|
import streamlit as st |
|
import datetime |
|
import pandas as pd |
|
from gnews import GNews |
|
from transformers import pipeline |
|
import plotly.graph_objects as go |
|
|
|
|
|
pipe = pipeline("text-classification", model="pramudyalyza/bert-indonesian-finetuned-news") |
|
|
|
|
|
def process_keyword(keyword): |
|
one_week_ago = datetime.datetime.now() - datetime.timedelta(days=7) |
|
|
|
news = GNews(language='id', country='ID', max_results=100) |
|
|
|
search_results = news.get_news(keyword) |
|
|
|
filtered_headlines = [] |
|
for article in search_results: |
|
published_date = datetime.datetime.strptime(article['published date'], '%a, %d %b %Y %H:%M:%S %Z') |
|
if published_date > one_week_ago: |
|
filtered_headlines.append(article['title']) |
|
|
|
df = pd.DataFrame(filtered_headlines, columns=['title']) |
|
df_clean = df.drop_duplicates() |
|
|
|
df_clean['sentiment'] = df_clean['title'].apply(lambda x: pipe(x)[0]['label']) |
|
|
|
positive_count = (df_clean['sentiment'] == 'Positive').sum() |
|
negative_count = (df_clean['sentiment'] == 'Negative').sum() |
|
neutral_count = (df_clean['sentiment'] == 'Neutral').sum() |
|
total_count = len(df_clean) |
|
|
|
return positive_count, negative_count, neutral_count, total_count, df_clean |
|
|
|
|
|
st.title("News Sentiment Analysis Dashboard") |
|
|
|
keyword_input = st.text_input("Enter a keyword to search for news", placeholder="Type a keyword...") |
|
|
|
if st.button("Analyze"): |
|
if keyword_input: |
|
with st.spinner('Scraping and analyzing the data...'): |
|
positive_count, negative_count, neutral_count, total_count, df_clean = process_keyword(keyword_input) |
|
|
|
|
|
fig_positive = go.Figure(go.Indicator( |
|
mode="gauge+number", |
|
value=positive_count, |
|
title={'text': "Positive Sentiment"}, |
|
gauge={'axis': {'range': [0, total_count]}, |
|
'bar': {'color': "green"}} |
|
)) |
|
|
|
fig_negative = go.Figure(go.Indicator( |
|
mode="gauge+number", |
|
value=negative_count, |
|
title={'text': "Negative Sentiment"}, |
|
gauge={'axis': {'range': [0, total_count]}, |
|
'bar': {'color': "red"}} |
|
)) |
|
|
|
fig_neutral = go.Figure(go.Indicator( |
|
mode="gauge+number", |
|
value=neutral_count, |
|
title={'text': "Neutral Sentiment"}, |
|
gauge={'axis': {'range': [0, total_count]}, |
|
'bar': {'color': "yellow"}} |
|
)) |
|
|
|
fig_donut = go.Figure(go.Pie( |
|
labels=['Positive', 'Negative', 'Neutral'], |
|
values=[positive_count, negative_count, neutral_count], |
|
hole=0.5, |
|
marker=dict(colors=['green', 'red', 'yellow']) |
|
)) |
|
fig_donut.update_layout(title_text='Sentiment Distribution') |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
|
|
col1.plotly_chart(fig_positive, use_container_width=True) |
|
col2.plotly_chart(fig_negative, use_container_width=True) |
|
col3.plotly_chart(fig_neutral, use_container_width=True) |
|
|
|
st.plotly_chart(fig_donut, use_container_width=True) |
|
|
|
st.write(f"News articles found: {total_count}") |
|
|
|
|
|
st.dataframe(df_clean, use_container_width=True) |
|
|
|
|
|
csv = df_clean.to_csv(index=False).encode('utf-8') |
|
st.download_button( |
|
label="Download CSV", |
|
data=csv, |
|
file_name='news_sentiment_analysis.csv', |
|
mime='text/csv', |
|
) |
|
else: |
|
st.error("Please enter a keyword.") |