Spaces:
Build error
Build error
pragnakalp
commited on
Commit
•
a0cee52
1
Parent(s):
2803aa5
upload degradation.py file for GFPGAN's basicsr torchvision error
Browse files- degradations.py +765 -0
degradations.py
ADDED
@@ -0,0 +1,765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
from scipy import special
|
7 |
+
from scipy.stats import multivariate_normal
|
8 |
+
from torchvision.transforms.functional import rgb_to_grayscale
|
9 |
+
# from torchvision.transforms.functional_tensor import rgb_to_grayscale
|
10 |
+
|
11 |
+
# -------------------------------------------------------------------- #
|
12 |
+
# --------------------------- blur kernels --------------------------- #
|
13 |
+
# -------------------------------------------------------------------- #
|
14 |
+
|
15 |
+
|
16 |
+
# --------------------------- util functions --------------------------- #
|
17 |
+
def sigma_matrix2(sig_x, sig_y, theta):
|
18 |
+
"""Calculate the rotated sigma matrix (two dimensional matrix).
|
19 |
+
|
20 |
+
Args:
|
21 |
+
sig_x (float):
|
22 |
+
sig_y (float):
|
23 |
+
theta (float): Radian measurement.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
ndarray: Rotated sigma matrix.
|
27 |
+
"""
|
28 |
+
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
|
29 |
+
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
|
30 |
+
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
|
31 |
+
|
32 |
+
|
33 |
+
def mesh_grid(kernel_size):
|
34 |
+
"""Generate the mesh grid, centering at zero.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
kernel_size (int):
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
|
41 |
+
xx (ndarray): with the shape (kernel_size, kernel_size)
|
42 |
+
yy (ndarray): with the shape (kernel_size, kernel_size)
|
43 |
+
"""
|
44 |
+
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
|
45 |
+
xx, yy = np.meshgrid(ax, ax)
|
46 |
+
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
|
47 |
+
1))).reshape(kernel_size, kernel_size, 2)
|
48 |
+
return xy, xx, yy
|
49 |
+
|
50 |
+
|
51 |
+
def pdf2(sigma_matrix, grid):
|
52 |
+
"""Calculate PDF of the bivariate Gaussian distribution.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
sigma_matrix (ndarray): with the shape (2, 2)
|
56 |
+
grid (ndarray): generated by :func:`mesh_grid`,
|
57 |
+
with the shape (K, K, 2), K is the kernel size.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
kernel (ndarrray): un-normalized kernel.
|
61 |
+
"""
|
62 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
63 |
+
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
|
64 |
+
return kernel
|
65 |
+
|
66 |
+
|
67 |
+
def cdf2(d_matrix, grid):
|
68 |
+
"""Calculate the CDF of the standard bivariate Gaussian distribution.
|
69 |
+
Used in skewed Gaussian distribution.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
d_matrix (ndarrasy): skew matrix.
|
73 |
+
grid (ndarray): generated by :func:`mesh_grid`,
|
74 |
+
with the shape (K, K, 2), K is the kernel size.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
cdf (ndarray): skewed cdf.
|
78 |
+
"""
|
79 |
+
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
|
80 |
+
grid = np.dot(grid, d_matrix)
|
81 |
+
cdf = rv.cdf(grid)
|
82 |
+
return cdf
|
83 |
+
|
84 |
+
|
85 |
+
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
|
86 |
+
"""Generate a bivariate isotropic or anisotropic Gaussian kernel.
|
87 |
+
|
88 |
+
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
kernel_size (int):
|
92 |
+
sig_x (float):
|
93 |
+
sig_y (float):
|
94 |
+
theta (float): Radian measurement.
|
95 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
96 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
97 |
+
isotropic (bool):
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
kernel (ndarray): normalized kernel.
|
101 |
+
"""
|
102 |
+
if grid is None:
|
103 |
+
grid, _, _ = mesh_grid(kernel_size)
|
104 |
+
if isotropic:
|
105 |
+
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
106 |
+
else:
|
107 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
108 |
+
kernel = pdf2(sigma_matrix, grid)
|
109 |
+
kernel = kernel / np.sum(kernel)
|
110 |
+
return kernel
|
111 |
+
|
112 |
+
|
113 |
+
def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
|
114 |
+
"""Generate a bivariate generalized Gaussian kernel.
|
115 |
+
|
116 |
+
``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions``
|
117 |
+
|
118 |
+
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
kernel_size (int):
|
122 |
+
sig_x (float):
|
123 |
+
sig_y (float):
|
124 |
+
theta (float): Radian measurement.
|
125 |
+
beta (float): shape parameter, beta = 1 is the normal distribution.
|
126 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
127 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
kernel (ndarray): normalized kernel.
|
131 |
+
"""
|
132 |
+
if grid is None:
|
133 |
+
grid, _, _ = mesh_grid(kernel_size)
|
134 |
+
if isotropic:
|
135 |
+
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
136 |
+
else:
|
137 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
138 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
139 |
+
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
|
140 |
+
kernel = kernel / np.sum(kernel)
|
141 |
+
return kernel
|
142 |
+
|
143 |
+
|
144 |
+
def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
|
145 |
+
"""Generate a plateau-like anisotropic kernel.
|
146 |
+
|
147 |
+
1 / (1+x^(beta))
|
148 |
+
|
149 |
+
Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution
|
150 |
+
|
151 |
+
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
kernel_size (int):
|
155 |
+
sig_x (float):
|
156 |
+
sig_y (float):
|
157 |
+
theta (float): Radian measurement.
|
158 |
+
beta (float): shape parameter, beta = 1 is the normal distribution.
|
159 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
160 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
kernel (ndarray): normalized kernel.
|
164 |
+
"""
|
165 |
+
if grid is None:
|
166 |
+
grid, _, _ = mesh_grid(kernel_size)
|
167 |
+
if isotropic:
|
168 |
+
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
169 |
+
else:
|
170 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
171 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
172 |
+
kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
|
173 |
+
kernel = kernel / np.sum(kernel)
|
174 |
+
return kernel
|
175 |
+
|
176 |
+
|
177 |
+
def random_bivariate_Gaussian(kernel_size,
|
178 |
+
sigma_x_range,
|
179 |
+
sigma_y_range,
|
180 |
+
rotation_range,
|
181 |
+
noise_range=None,
|
182 |
+
isotropic=True):
|
183 |
+
"""Randomly generate bivariate isotropic or anisotropic Gaussian kernels.
|
184 |
+
|
185 |
+
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
kernel_size (int):
|
189 |
+
sigma_x_range (tuple): [0.6, 5]
|
190 |
+
sigma_y_range (tuple): [0.6, 5]
|
191 |
+
rotation range (tuple): [-math.pi, math.pi]
|
192 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
193 |
+
[0.75, 1.25]. Default: None
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
kernel (ndarray):
|
197 |
+
"""
|
198 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
199 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
200 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
201 |
+
if isotropic is False:
|
202 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
203 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
204 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
205 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
206 |
+
else:
|
207 |
+
sigma_y = sigma_x
|
208 |
+
rotation = 0
|
209 |
+
|
210 |
+
kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic)
|
211 |
+
|
212 |
+
# add multiplicative noise
|
213 |
+
if noise_range is not None:
|
214 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
215 |
+
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
216 |
+
kernel = kernel * noise
|
217 |
+
kernel = kernel / np.sum(kernel)
|
218 |
+
return kernel
|
219 |
+
|
220 |
+
|
221 |
+
def random_bivariate_generalized_Gaussian(kernel_size,
|
222 |
+
sigma_x_range,
|
223 |
+
sigma_y_range,
|
224 |
+
rotation_range,
|
225 |
+
beta_range,
|
226 |
+
noise_range=None,
|
227 |
+
isotropic=True):
|
228 |
+
"""Randomly generate bivariate generalized Gaussian kernels.
|
229 |
+
|
230 |
+
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
kernel_size (int):
|
234 |
+
sigma_x_range (tuple): [0.6, 5]
|
235 |
+
sigma_y_range (tuple): [0.6, 5]
|
236 |
+
rotation range (tuple): [-math.pi, math.pi]
|
237 |
+
beta_range (tuple): [0.5, 8]
|
238 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
239 |
+
[0.75, 1.25]. Default: None
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
kernel (ndarray):
|
243 |
+
"""
|
244 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
245 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
246 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
247 |
+
if isotropic is False:
|
248 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
249 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
250 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
251 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
252 |
+
else:
|
253 |
+
sigma_y = sigma_x
|
254 |
+
rotation = 0
|
255 |
+
|
256 |
+
# assume beta_range[0] < 1 < beta_range[1]
|
257 |
+
if np.random.uniform() < 0.5:
|
258 |
+
beta = np.random.uniform(beta_range[0], 1)
|
259 |
+
else:
|
260 |
+
beta = np.random.uniform(1, beta_range[1])
|
261 |
+
|
262 |
+
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
|
263 |
+
|
264 |
+
# add multiplicative noise
|
265 |
+
if noise_range is not None:
|
266 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
267 |
+
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
268 |
+
kernel = kernel * noise
|
269 |
+
kernel = kernel / np.sum(kernel)
|
270 |
+
return kernel
|
271 |
+
|
272 |
+
|
273 |
+
def random_bivariate_plateau(kernel_size,
|
274 |
+
sigma_x_range,
|
275 |
+
sigma_y_range,
|
276 |
+
rotation_range,
|
277 |
+
beta_range,
|
278 |
+
noise_range=None,
|
279 |
+
isotropic=True):
|
280 |
+
"""Randomly generate bivariate plateau kernels.
|
281 |
+
|
282 |
+
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
kernel_size (int):
|
286 |
+
sigma_x_range (tuple): [0.6, 5]
|
287 |
+
sigma_y_range (tuple): [0.6, 5]
|
288 |
+
rotation range (tuple): [-math.pi/2, math.pi/2]
|
289 |
+
beta_range (tuple): [1, 4]
|
290 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
291 |
+
[0.75, 1.25]. Default: None
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
kernel (ndarray):
|
295 |
+
"""
|
296 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
297 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
298 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
299 |
+
if isotropic is False:
|
300 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
301 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
302 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
303 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
304 |
+
else:
|
305 |
+
sigma_y = sigma_x
|
306 |
+
rotation = 0
|
307 |
+
|
308 |
+
# TODO: this may be not proper
|
309 |
+
if np.random.uniform() < 0.5:
|
310 |
+
beta = np.random.uniform(beta_range[0], 1)
|
311 |
+
else:
|
312 |
+
beta = np.random.uniform(1, beta_range[1])
|
313 |
+
|
314 |
+
kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
|
315 |
+
# add multiplicative noise
|
316 |
+
if noise_range is not None:
|
317 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
318 |
+
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
319 |
+
kernel = kernel * noise
|
320 |
+
kernel = kernel / np.sum(kernel)
|
321 |
+
|
322 |
+
return kernel
|
323 |
+
|
324 |
+
|
325 |
+
def random_mixed_kernels(kernel_list,
|
326 |
+
kernel_prob,
|
327 |
+
kernel_size=21,
|
328 |
+
sigma_x_range=(0.6, 5),
|
329 |
+
sigma_y_range=(0.6, 5),
|
330 |
+
rotation_range=(-math.pi, math.pi),
|
331 |
+
betag_range=(0.5, 8),
|
332 |
+
betap_range=(0.5, 8),
|
333 |
+
noise_range=None):
|
334 |
+
"""Randomly generate mixed kernels.
|
335 |
+
|
336 |
+
Args:
|
337 |
+
kernel_list (tuple): a list name of kernel types,
|
338 |
+
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso',
|
339 |
+
'plateau_aniso']
|
340 |
+
kernel_prob (tuple): corresponding kernel probability for each
|
341 |
+
kernel type
|
342 |
+
kernel_size (int):
|
343 |
+
sigma_x_range (tuple): [0.6, 5]
|
344 |
+
sigma_y_range (tuple): [0.6, 5]
|
345 |
+
rotation range (tuple): [-math.pi, math.pi]
|
346 |
+
beta_range (tuple): [0.5, 8]
|
347 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
348 |
+
[0.75, 1.25]. Default: None
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
kernel (ndarray):
|
352 |
+
"""
|
353 |
+
kernel_type = random.choices(kernel_list, kernel_prob)[0]
|
354 |
+
if kernel_type == 'iso':
|
355 |
+
kernel = random_bivariate_Gaussian(
|
356 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True)
|
357 |
+
elif kernel_type == 'aniso':
|
358 |
+
kernel = random_bivariate_Gaussian(
|
359 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False)
|
360 |
+
elif kernel_type == 'generalized_iso':
|
361 |
+
kernel = random_bivariate_generalized_Gaussian(
|
362 |
+
kernel_size,
|
363 |
+
sigma_x_range,
|
364 |
+
sigma_y_range,
|
365 |
+
rotation_range,
|
366 |
+
betag_range,
|
367 |
+
noise_range=noise_range,
|
368 |
+
isotropic=True)
|
369 |
+
elif kernel_type == 'generalized_aniso':
|
370 |
+
kernel = random_bivariate_generalized_Gaussian(
|
371 |
+
kernel_size,
|
372 |
+
sigma_x_range,
|
373 |
+
sigma_y_range,
|
374 |
+
rotation_range,
|
375 |
+
betag_range,
|
376 |
+
noise_range=noise_range,
|
377 |
+
isotropic=False)
|
378 |
+
elif kernel_type == 'plateau_iso':
|
379 |
+
kernel = random_bivariate_plateau(
|
380 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True)
|
381 |
+
elif kernel_type == 'plateau_aniso':
|
382 |
+
kernel = random_bivariate_plateau(
|
383 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False)
|
384 |
+
return kernel
|
385 |
+
|
386 |
+
|
387 |
+
np.seterr(divide='ignore', invalid='ignore')
|
388 |
+
|
389 |
+
|
390 |
+
def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
|
391 |
+
"""2D sinc filter
|
392 |
+
|
393 |
+
Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
|
394 |
+
|
395 |
+
Args:
|
396 |
+
cutoff (float): cutoff frequency in radians (pi is max)
|
397 |
+
kernel_size (int): horizontal and vertical size, must be odd.
|
398 |
+
pad_to (int): pad kernel size to desired size, must be odd or zero.
|
399 |
+
"""
|
400 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
401 |
+
kernel = np.fromfunction(
|
402 |
+
lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
|
403 |
+
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt(
|
404 |
+
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size])
|
405 |
+
kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi)
|
406 |
+
kernel = kernel / np.sum(kernel)
|
407 |
+
if pad_to > kernel_size:
|
408 |
+
pad_size = (pad_to - kernel_size) // 2
|
409 |
+
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
|
410 |
+
return kernel
|
411 |
+
|
412 |
+
|
413 |
+
# ------------------------------------------------------------- #
|
414 |
+
# --------------------------- noise --------------------------- #
|
415 |
+
# ------------------------------------------------------------- #
|
416 |
+
|
417 |
+
# ----------------------- Gaussian Noise ----------------------- #
|
418 |
+
|
419 |
+
|
420 |
+
def generate_gaussian_noise(img, sigma=10, gray_noise=False):
|
421 |
+
"""Generate Gaussian noise.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
425 |
+
sigma (float): Noise scale (measured in range 255). Default: 10.
|
426 |
+
|
427 |
+
Returns:
|
428 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
429 |
+
float32.
|
430 |
+
"""
|
431 |
+
if gray_noise:
|
432 |
+
noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255.
|
433 |
+
noise = np.expand_dims(noise, axis=2).repeat(3, axis=2)
|
434 |
+
else:
|
435 |
+
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255.
|
436 |
+
return noise
|
437 |
+
|
438 |
+
|
439 |
+
def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False):
|
440 |
+
"""Add Gaussian noise.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
444 |
+
sigma (float): Noise scale (measured in range 255). Default: 10.
|
445 |
+
|
446 |
+
Returns:
|
447 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
448 |
+
float32.
|
449 |
+
"""
|
450 |
+
noise = generate_gaussian_noise(img, sigma, gray_noise)
|
451 |
+
out = img + noise
|
452 |
+
if clip and rounds:
|
453 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
454 |
+
elif clip:
|
455 |
+
out = np.clip(out, 0, 1)
|
456 |
+
elif rounds:
|
457 |
+
out = (out * 255.0).round() / 255.
|
458 |
+
return out
|
459 |
+
|
460 |
+
|
461 |
+
def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0):
|
462 |
+
"""Add Gaussian noise (PyTorch version).
|
463 |
+
|
464 |
+
Args:
|
465 |
+
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
|
466 |
+
scale (float | Tensor): Noise scale. Default: 1.0.
|
467 |
+
|
468 |
+
Returns:
|
469 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
470 |
+
float32.
|
471 |
+
"""
|
472 |
+
b, _, h, w = img.size()
|
473 |
+
if not isinstance(sigma, (float, int)):
|
474 |
+
sigma = sigma.view(img.size(0), 1, 1, 1)
|
475 |
+
if isinstance(gray_noise, (float, int)):
|
476 |
+
cal_gray_noise = gray_noise > 0
|
477 |
+
else:
|
478 |
+
gray_noise = gray_noise.view(b, 1, 1, 1)
|
479 |
+
cal_gray_noise = torch.sum(gray_noise) > 0
|
480 |
+
|
481 |
+
if cal_gray_noise:
|
482 |
+
noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255.
|
483 |
+
noise_gray = noise_gray.view(b, 1, h, w)
|
484 |
+
|
485 |
+
# always calculate color noise
|
486 |
+
noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255.
|
487 |
+
|
488 |
+
if cal_gray_noise:
|
489 |
+
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
|
490 |
+
return noise
|
491 |
+
|
492 |
+
|
493 |
+
def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False):
|
494 |
+
"""Add Gaussian noise (PyTorch version).
|
495 |
+
|
496 |
+
Args:
|
497 |
+
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
|
498 |
+
scale (float | Tensor): Noise scale. Default: 1.0.
|
499 |
+
|
500 |
+
Returns:
|
501 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
502 |
+
float32.
|
503 |
+
"""
|
504 |
+
noise = generate_gaussian_noise_pt(img, sigma, gray_noise)
|
505 |
+
out = img + noise
|
506 |
+
if clip and rounds:
|
507 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
508 |
+
elif clip:
|
509 |
+
out = torch.clamp(out, 0, 1)
|
510 |
+
elif rounds:
|
511 |
+
out = (out * 255.0).round() / 255.
|
512 |
+
return out
|
513 |
+
|
514 |
+
|
515 |
+
# ----------------------- Random Gaussian Noise ----------------------- #
|
516 |
+
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0):
|
517 |
+
sigma = np.random.uniform(sigma_range[0], sigma_range[1])
|
518 |
+
if np.random.uniform() < gray_prob:
|
519 |
+
gray_noise = True
|
520 |
+
else:
|
521 |
+
gray_noise = False
|
522 |
+
return generate_gaussian_noise(img, sigma, gray_noise)
|
523 |
+
|
524 |
+
|
525 |
+
def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
526 |
+
noise = random_generate_gaussian_noise(img, sigma_range, gray_prob)
|
527 |
+
out = img + noise
|
528 |
+
if clip and rounds:
|
529 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
530 |
+
elif clip:
|
531 |
+
out = np.clip(out, 0, 1)
|
532 |
+
elif rounds:
|
533 |
+
out = (out * 255.0).round() / 255.
|
534 |
+
return out
|
535 |
+
|
536 |
+
|
537 |
+
def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0):
|
538 |
+
sigma = torch.rand(
|
539 |
+
img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0]
|
540 |
+
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
|
541 |
+
gray_noise = (gray_noise < gray_prob).float()
|
542 |
+
return generate_gaussian_noise_pt(img, sigma, gray_noise)
|
543 |
+
|
544 |
+
|
545 |
+
def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
546 |
+
noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob)
|
547 |
+
out = img + noise
|
548 |
+
if clip and rounds:
|
549 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
550 |
+
elif clip:
|
551 |
+
out = torch.clamp(out, 0, 1)
|
552 |
+
elif rounds:
|
553 |
+
out = (out * 255.0).round() / 255.
|
554 |
+
return out
|
555 |
+
|
556 |
+
|
557 |
+
# ----------------------- Poisson (Shot) Noise ----------------------- #
|
558 |
+
|
559 |
+
|
560 |
+
def generate_poisson_noise(img, scale=1.0, gray_noise=False):
|
561 |
+
"""Generate poisson noise.
|
562 |
+
|
563 |
+
Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219
|
564 |
+
|
565 |
+
Args:
|
566 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
567 |
+
scale (float): Noise scale. Default: 1.0.
|
568 |
+
gray_noise (bool): Whether generate gray noise. Default: False.
|
569 |
+
|
570 |
+
Returns:
|
571 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
572 |
+
float32.
|
573 |
+
"""
|
574 |
+
if gray_noise:
|
575 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
576 |
+
# round and clip image for counting vals correctly
|
577 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
578 |
+
vals = len(np.unique(img))
|
579 |
+
vals = 2**np.ceil(np.log2(vals))
|
580 |
+
out = np.float32(np.random.poisson(img * vals) / float(vals))
|
581 |
+
noise = out - img
|
582 |
+
if gray_noise:
|
583 |
+
noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2)
|
584 |
+
return noise * scale
|
585 |
+
|
586 |
+
|
587 |
+
def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False):
|
588 |
+
"""Add poisson noise.
|
589 |
+
|
590 |
+
Args:
|
591 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
592 |
+
scale (float): Noise scale. Default: 1.0.
|
593 |
+
gray_noise (bool): Whether generate gray noise. Default: False.
|
594 |
+
|
595 |
+
Returns:
|
596 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
597 |
+
float32.
|
598 |
+
"""
|
599 |
+
noise = generate_poisson_noise(img, scale, gray_noise)
|
600 |
+
out = img + noise
|
601 |
+
if clip and rounds:
|
602 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
603 |
+
elif clip:
|
604 |
+
out = np.clip(out, 0, 1)
|
605 |
+
elif rounds:
|
606 |
+
out = (out * 255.0).round() / 255.
|
607 |
+
return out
|
608 |
+
|
609 |
+
|
610 |
+
def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0):
|
611 |
+
"""Generate a batch of poisson noise (PyTorch version)
|
612 |
+
|
613 |
+
Args:
|
614 |
+
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
|
615 |
+
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
|
616 |
+
Default: 1.0.
|
617 |
+
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
|
618 |
+
0 for False, 1 for True. Default: 0.
|
619 |
+
|
620 |
+
Returns:
|
621 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
622 |
+
float32.
|
623 |
+
"""
|
624 |
+
b, _, h, w = img.size()
|
625 |
+
if isinstance(gray_noise, (float, int)):
|
626 |
+
cal_gray_noise = gray_noise > 0
|
627 |
+
else:
|
628 |
+
gray_noise = gray_noise.view(b, 1, 1, 1)
|
629 |
+
cal_gray_noise = torch.sum(gray_noise) > 0
|
630 |
+
if cal_gray_noise:
|
631 |
+
img_gray = rgb_to_grayscale(img, num_output_channels=1)
|
632 |
+
# round and clip image for counting vals correctly
|
633 |
+
img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255.
|
634 |
+
# use for-loop to get the unique values for each sample
|
635 |
+
vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)]
|
636 |
+
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
|
637 |
+
vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1)
|
638 |
+
out = torch.poisson(img_gray * vals) / vals
|
639 |
+
noise_gray = out - img_gray
|
640 |
+
noise_gray = noise_gray.expand(b, 3, h, w)
|
641 |
+
|
642 |
+
# always calculate color noise
|
643 |
+
# round and clip image for counting vals correctly
|
644 |
+
img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
|
645 |
+
# use for-loop to get the unique values for each sample
|
646 |
+
vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)]
|
647 |
+
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
|
648 |
+
vals = img.new_tensor(vals_list).view(b, 1, 1, 1)
|
649 |
+
out = torch.poisson(img * vals) / vals
|
650 |
+
noise = out - img
|
651 |
+
if cal_gray_noise:
|
652 |
+
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
|
653 |
+
if not isinstance(scale, (float, int)):
|
654 |
+
scale = scale.view(b, 1, 1, 1)
|
655 |
+
return noise * scale
|
656 |
+
|
657 |
+
|
658 |
+
def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0):
|
659 |
+
"""Add poisson noise to a batch of images (PyTorch version).
|
660 |
+
|
661 |
+
Args:
|
662 |
+
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
|
663 |
+
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
|
664 |
+
Default: 1.0.
|
665 |
+
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
|
666 |
+
0 for False, 1 for True. Default: 0.
|
667 |
+
|
668 |
+
Returns:
|
669 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
670 |
+
float32.
|
671 |
+
"""
|
672 |
+
noise = generate_poisson_noise_pt(img, scale, gray_noise)
|
673 |
+
out = img + noise
|
674 |
+
if clip and rounds:
|
675 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
676 |
+
elif clip:
|
677 |
+
out = torch.clamp(out, 0, 1)
|
678 |
+
elif rounds:
|
679 |
+
out = (out * 255.0).round() / 255.
|
680 |
+
return out
|
681 |
+
|
682 |
+
|
683 |
+
# ----------------------- Random Poisson (Shot) Noise ----------------------- #
|
684 |
+
|
685 |
+
|
686 |
+
def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0):
|
687 |
+
scale = np.random.uniform(scale_range[0], scale_range[1])
|
688 |
+
if np.random.uniform() < gray_prob:
|
689 |
+
gray_noise = True
|
690 |
+
else:
|
691 |
+
gray_noise = False
|
692 |
+
return generate_poisson_noise(img, scale, gray_noise)
|
693 |
+
|
694 |
+
|
695 |
+
def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
696 |
+
noise = random_generate_poisson_noise(img, scale_range, gray_prob)
|
697 |
+
out = img + noise
|
698 |
+
if clip and rounds:
|
699 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
700 |
+
elif clip:
|
701 |
+
out = np.clip(out, 0, 1)
|
702 |
+
elif rounds:
|
703 |
+
out = (out * 255.0).round() / 255.
|
704 |
+
return out
|
705 |
+
|
706 |
+
|
707 |
+
def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0):
|
708 |
+
scale = torch.rand(
|
709 |
+
img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0]
|
710 |
+
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
|
711 |
+
gray_noise = (gray_noise < gray_prob).float()
|
712 |
+
return generate_poisson_noise_pt(img, scale, gray_noise)
|
713 |
+
|
714 |
+
|
715 |
+
def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
716 |
+
noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob)
|
717 |
+
out = img + noise
|
718 |
+
if clip and rounds:
|
719 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
720 |
+
elif clip:
|
721 |
+
out = torch.clamp(out, 0, 1)
|
722 |
+
elif rounds:
|
723 |
+
out = (out * 255.0).round() / 255.
|
724 |
+
return out
|
725 |
+
|
726 |
+
|
727 |
+
# ------------------------------------------------------------------------ #
|
728 |
+
# --------------------------- JPEG compression --------------------------- #
|
729 |
+
# ------------------------------------------------------------------------ #
|
730 |
+
|
731 |
+
|
732 |
+
def add_jpg_compression(img, quality=90):
|
733 |
+
"""Add JPG compression artifacts.
|
734 |
+
|
735 |
+
Args:
|
736 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
737 |
+
quality (float): JPG compression quality. 0 for lowest quality, 100 for
|
738 |
+
best quality. Default: 90.
|
739 |
+
|
740 |
+
Returns:
|
741 |
+
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
|
742 |
+
float32.
|
743 |
+
"""
|
744 |
+
img = np.clip(img, 0, 1)
|
745 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
746 |
+
_, encimg = cv2.imencode('.jpg', img * 255., encode_param)
|
747 |
+
img = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
748 |
+
return img
|
749 |
+
|
750 |
+
|
751 |
+
def random_add_jpg_compression(img, quality_range=(90, 100)):
|
752 |
+
"""Randomly add JPG compression artifacts.
|
753 |
+
|
754 |
+
Args:
|
755 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
756 |
+
quality_range (tuple[float] | list[float]): JPG compression quality
|
757 |
+
range. 0 for lowest quality, 100 for best quality.
|
758 |
+
Default: (90, 100).
|
759 |
+
|
760 |
+
Returns:
|
761 |
+
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
|
762 |
+
float32.
|
763 |
+
"""
|
764 |
+
quality = np.random.uniform(quality_range[0], quality_range[1])
|
765 |
+
return add_jpg_compression(img, quality)
|