pragnakalp commited on
Commit
d1fca03
·
1 Parent(s): 81a7c00
Files changed (1) hide show
  1. app.py +12 -16
app.py CHANGED
@@ -1,14 +1,8 @@
1
  import gradio as gr
2
- from datetime import date
3
- import json
4
- import csv
5
- import datetime
6
- import smtplib
7
- from email.mime.text import MIMEText
8
- import requests
9
  from transformers import AutoTokenizer, AutoModelWithLMHead
10
  import gc
11
  import os
 
12
 
13
  cwd = os.getcwd()
14
  model_path = os.path.join(cwd)
@@ -27,10 +21,10 @@ def get_emotion(text):
27
  return label
28
 
29
  def generate_emotion(article):
30
- print("hello")
31
  sen_list = article
32
- sen_list = sen_list.split('\r\n')
33
  sen_list_temp = sen_list[0:]
 
34
  results_dict = []
35
  results = []
36
 
@@ -46,16 +40,18 @@ def generate_emotion(article):
46
  }
47
  )
48
 
49
- result = {
50
- 'result': results_dict,
51
- }
 
52
  gc.collect()
53
- print("LENGTH of results ====> ", results)
54
 
55
- return result
56
 
57
  inputs=gr.Textbox(lines=10, label="Sentences",elem_id="inp_div")
58
- outputs=gr.Textbox(lines=10, label="Here is the Result",elem_id="inp_div")
 
59
 
60
  demo = gr.Interface(
61
  generate_emotion,
@@ -63,6 +59,6 @@ demo = gr.Interface(
63
  outputs,
64
  title="Emotion Detection",
65
  description="Feel free to give your feedback",
66
- css=".gradio-container {background-color: lightgray} #inp_div {background-color: [#7](https://www1.example.com/issues/7)FB3D5;"
67
  )
68
  demo.launch()
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
  from transformers import AutoTokenizer, AutoModelWithLMHead
3
  import gc
4
  import os
5
+ import pandas as pd
6
 
7
  cwd = os.getcwd()
8
  model_path = os.path.join(cwd)
 
21
  return label
22
 
23
  def generate_emotion(article):
 
24
  sen_list = article
25
+ sen_list = sen_list.split('\n')
26
  sen_list_temp = sen_list[0:]
27
+ print(sen_list_temp)
28
  results_dict = []
29
  results = []
30
 
 
40
  }
41
  )
42
 
43
+ # result = {
44
+ # 'result': results_dict,
45
+ # }
46
+ result = {'Input':sen_list_temp, 'Detected Emotion':results}
47
  gc.collect()
48
+ # print("LENGTH of results ====> ", results)
49
 
50
+ return pd.DataFrame(result)
51
 
52
  inputs=gr.Textbox(lines=10, label="Sentences",elem_id="inp_div")
53
+ outputs = [gr.Dataframe(row_count = (1, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]
54
+
55
 
56
  demo = gr.Interface(
57
  generate_emotion,
 
59
  outputs,
60
  title="Emotion Detection",
61
  description="Feel free to give your feedback",
62
+ css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}"
63
  )
64
  demo.launch()