Spaces:
Sleeping
Sleeping
import gc | |
import os | |
import csv | |
import socket | |
import huggingface_hub | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import Repository | |
from transformers import AutoTokenizer, AutoModelWithLMHead | |
## connection with HF datasets | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
DATASET_NAME = "emotion_detection" | |
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}" | |
DATA_FILENAME = "emotion_detection_logs.csv" | |
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME) | |
DATASET_REPO_ID = "pragnakalp/emotion_detection" | |
print("is none?", HF_TOKEN is None) | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
repo = Repository( | |
local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
SENTENCES_VALUE = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him.""" | |
## load model | |
cwd = os.getcwd() | |
model_path = os.path.join(cwd) | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion") | |
model_base = AutoModelWithLMHead.from_pretrained(model_path) | |
""" | |
get ip address | |
""" | |
def get_device_ip_address(): | |
result = {} | |
if os.name == "nt": | |
result = "Running on Windows" | |
hostname = socket.gethostname() | |
ip_address = socket.gethostbyname(hostname) | |
result['ip_addr'] = ip_address | |
result['host'] = hostname | |
print(result) | |
return result | |
elif os.name == "posix": | |
gw = os.popen("ip -4 route show default").read().split() | |
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
s.connect((gw[2], 0)) | |
ipaddr = s.getsockname()[0] | |
gateway = gw[2] | |
host = socket.gethostname() | |
result['ip_addr'] = ipaddr | |
result['host'] = host | |
print(result) | |
return result | |
else: | |
result['id'] = os.name + " not supported yet." | |
print(result) | |
return result | |
""" | |
generate emotions of the sentences | |
""" | |
def get_emotion(text): | |
# input_ids = tokenizer.encode(text + '</s>', return_tensors='pt') | |
input_ids = tokenizer.encode(text, return_tensors='pt') | |
output = model_base.generate(input_ids=input_ids, | |
max_length=2) | |
dec = [tokenizer.decode(ids) for ids in output] | |
label = dec[0] | |
gc.collect() | |
return label | |
def generate_emotion(article): | |
sen_list = article | |
sen_list = sen_list.split('\n') | |
sen_list_temp = sen_list[0:] | |
print(sen_list_temp) | |
results_dict = [] | |
results = [] | |
for sen in sen_list_temp: | |
if(sen.strip()): | |
cur_result = get_emotion(sen) | |
results.append(cur_result) | |
results_dict.append( | |
{ | |
'sentence': sen, | |
'emotion': cur_result | |
} | |
) | |
result = {'Input':sen_list_temp, 'Detected Emotion':results} | |
gc.collect() | |
save_data_and_sendmail(results_dict,sen_list, results) | |
return pd.DataFrame(result) | |
""" | |
Save generated details | |
""" | |
def save_data_and_sendmail(results_dict,sen_list,results): | |
try: | |
hostname = {} | |
add_csv = [results_dict] | |
with open(DATA_FILE, "a") as f: | |
writer = csv.writer(f) | |
# write the data | |
writer.writerow(add_csv) | |
commit_url = repo.push_to_hub() | |
print("commit data :",commit_url) | |
hostname = get_device_ip_address() | |
print("hostname ",hostname) | |
url = 'https://pragnakalpdev35.pythonanywhere.com/hf_space_emotion_detection' | |
# url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator' | |
myobj = {'sen_list': sen_list,'gen_results': results,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")} | |
print("myobj ",myobj) | |
x = requests.post(url, json = myobj) | |
except Exception as e: | |
return "Error while sending mail" + str(e) | |
return "Successfully save data" | |
""" | |
UI design for demo using gradio app | |
""" | |
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=10, label="Sentences",elem_id="inp_div") | |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])] | |
demo = gr.Interface( | |
generate_emotion, | |
inputs, | |
outputs, | |
title="Emotion Detection", | |
description="Feel free to give your feedback", | |
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}" | |
) | |
demo.launch() |