Spaces:
Sleeping
Sleeping
Upload server2.py (#2)
Browse files- Upload server2.py (78f0027f7b97edad380ac1958de682d2256449dd)
Co-authored-by: Nossa <[email protected]>
- server2.py +136 -0
server2.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import joblib
|
6 |
+
from sklearn.tree import DecisionTreeClassifier, XGBClassifier #using sklearn decisiontreeclassifier
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
|
9 |
+
import os
|
10 |
+
import shutil
|
11 |
+
|
12 |
+
# Define the directory for FHE client/server files
|
13 |
+
fhe_directory = '/tmp/fhe_client_server_files/'
|
14 |
+
|
15 |
+
# Create the directory if it does not exist
|
16 |
+
if not os.path.exists(fhe_directory):
|
17 |
+
os.makedirs(fhe_directory)
|
18 |
+
else:
|
19 |
+
# If it exists, delete its contents
|
20 |
+
shutil.rmtree(fhe_directory)
|
21 |
+
os.makedirs(fhe_directory)
|
22 |
+
|
23 |
+
data=pd.read_csv('data/heart.xls')
|
24 |
+
|
25 |
+
|
26 |
+
data.info() #checking the info
|
27 |
+
|
28 |
+
data_corr=data.corr()
|
29 |
+
|
30 |
+
plt.figure(figsize=(20,20))
|
31 |
+
sns.heatmap(data=data_corr,annot=True)
|
32 |
+
#Heatmap for data
|
33 |
+
"""
|
34 |
+
# Get the Data
|
35 |
+
X_train, y_train, X_val, y_val = train_test_split()
|
36 |
+
classifier = XGBClassifier()
|
37 |
+
# Training the Model
|
38 |
+
classifier = classifier.fit(X_train, y_train)
|
39 |
+
# Trained Model Evaluation on Validation Dataset
|
40 |
+
confidence = classifier.score(X_val, y_val)
|
41 |
+
# Validation Data Prediction
|
42 |
+
y_pred = classifier.predict(X_val)
|
43 |
+
# Model Validation Accuracy
|
44 |
+
accuracy = accuracy_score(y_val, y_pred)
|
45 |
+
# Model Confusion Matrix
|
46 |
+
conf_mat = confusion_matrix(y_val, y_pred)
|
47 |
+
# Model Classification Report
|
48 |
+
clf_report = classification_report(y_val, y_pred)
|
49 |
+
# Model Cross Validation Score
|
50 |
+
score = cross_val_score(classifier, X_val, y_val, cv=3)
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Load Trained Model
|
54 |
+
clf = load(str(self.model_save_path + saved_model_name + ".joblib"))
|
55 |
+
except Exception as e:
|
56 |
+
print("Model not found...")
|
57 |
+
|
58 |
+
if test_data is not None:
|
59 |
+
result = clf.predict(test_data)
|
60 |
+
print(result)
|
61 |
+
else:
|
62 |
+
result = clf.predict(self.test_features)
|
63 |
+
accuracy = accuracy_score(self.test_labels, result)
|
64 |
+
clf_report = classification_report(self.test_labels, result)
|
65 |
+
print(accuracy, clf_report)
|
66 |
+
"""
|
67 |
+
####################
|
68 |
+
feature_value=np.array(data_corr['output'])
|
69 |
+
for i in range(len(feature_value)):
|
70 |
+
if feature_value[i]<0:
|
71 |
+
feature_value[i]=-feature_value[i]
|
72 |
+
|
73 |
+
print(feature_value)
|
74 |
+
|
75 |
+
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])
|
76 |
+
|
77 |
+
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)
|
78 |
+
|
79 |
+
feature_selected=feature_sorted.index
|
80 |
+
|
81 |
+
feature_selected #selected features which are very much correalated
|
82 |
+
|
83 |
+
clean_data=data[feature_selected]
|
84 |
+
|
85 |
+
#making input and output dataset
|
86 |
+
X=clean_data.iloc[:,1:]
|
87 |
+
Y=clean_data['output']
|
88 |
+
|
89 |
+
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
|
90 |
+
|
91 |
+
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset
|
92 |
+
|
93 |
+
# feature scaling
|
94 |
+
from sklearn.preprocessing import StandardScaler
|
95 |
+
sc=StandardScaler()
|
96 |
+
x_train=sc.fit_transform(x_train)
|
97 |
+
x_test=sc.transform(x_test)
|
98 |
+
|
99 |
+
#training our model
|
100 |
+
dt=XGBClassifier(criterion='entropy',max_depth=6)
|
101 |
+
dt.fit(x_train,y_train)
|
102 |
+
#dt.compile(x_trqin)
|
103 |
+
|
104 |
+
#predicting the value on testing data
|
105 |
+
y_pred=dt.predict(x_test)
|
106 |
+
|
107 |
+
#ploting the data
|
108 |
+
from sklearn.metrics import confusion_matrix
|
109 |
+
conf_mat=confusion_matrix(y_test,y_pred)
|
110 |
+
print(conf_mat)
|
111 |
+
accuracy=dt.score(x_test,y_test)
|
112 |
+
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
|
113 |
+
|
114 |
+
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
115 |
+
|
116 |
+
from concrete.ml.sklearn import DecisionTreeClassifier as ConcreteDecisionTreeClassifier
|
117 |
+
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBClassifier
|
118 |
+
|
119 |
+
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10) #de FHE
|
120 |
+
fhe_compatible.compile(x_train)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
#### server
|
128 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
129 |
+
|
130 |
+
# Setup the development environment
|
131 |
+
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
132 |
+
dev.save()
|
133 |
+
|
134 |
+
# Setup the server
|
135 |
+
server = FHEModelServer(path_dir=fhe_directory)
|
136 |
+
server.load()
|