File size: 3,897 Bytes
32965bb
 
0489425
 
 
342e306
 
0489425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342e306
0489425
 
 
 
 
 
 
342e306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0489425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32965bb
0489425
32965bb
0489425
32965bb
0489425
 
 
 
 
 
 
342e306
0489425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342e306
 
0489425
342e306
0489425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import joblib
from sklearn.tree import DecisionTreeClassifier, XGBClassifier                   #using sklearn decisiontreeclassifier
from sklearn.model_selection import train_test_split

import os
import shutil

# Define the directory for FHE client/server files
fhe_directory = '/tmp/fhe_client_server_files/'

# Create the directory if it does not exist
if not os.path.exists(fhe_directory):
    os.makedirs(fhe_directory)
else:
    # If it exists, delete its contents
    shutil.rmtree(fhe_directory)
    os.makedirs(fhe_directory)

data=pd.read_csv('data/heart.xls')


data.info()   #checking the info

data_corr=data.corr()

plt.figure(figsize=(20,20))
sns.heatmap(data=data_corr,annot=True)
#Heatmap for data
"""
# Get the Data
X_train, y_train, X_val, y_val = train_test_split()
classifier = XGBClassifier()
# Training the Model
classifier = classifier.fit(X_train, y_train)
# Trained Model Evaluation on Validation Dataset
confidence = classifier.score(X_val, y_val)
# Validation Data Prediction
y_pred = classifier.predict(X_val)
# Model Validation Accuracy
accuracy = accuracy_score(y_val, y_pred)
# Model Confusion Matrix
conf_mat = confusion_matrix(y_val, y_pred)
# Model Classification Report
clf_report = classification_report(y_val, y_pred)
# Model Cross Validation Score
score = cross_val_score(classifier, X_val, y_val, cv=3)

try:
    # Load Trained Model
    clf = load(str(self.model_save_path + saved_model_name + ".joblib"))
except Exception as e:
    print("Model not found...")

if test_data is not None:
    result = clf.predict(test_data)
    print(result)
else:
    result = clf.predict(self.test_features)
accuracy = accuracy_score(self.test_labels, result)
clf_report = classification_report(self.test_labels, result)
print(accuracy, clf_report)
"""
####################
feature_value=np.array(data_corr['output'])
for i in range(len(feature_value)):
    if feature_value[i]<0:
        feature_value[i]=-feature_value[i]

print(feature_value)

features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])

feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)

feature_selected=feature_sorted.index

feature_selected     #selected features which are very much correalated

clean_data=data[feature_selected]

#making input and output dataset
X=clean_data.iloc[:,1:]
Y=clean_data['output']

x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)

print(x_train.shape,y_train.shape,x_test.shape,y_test.shape)     #data is splited in traing and testing dataset

# feature scaling
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_test=sc.transform(x_test)

#training our model
dt=XGBClassifier(criterion='entropy',max_depth=6)
dt.fit(x_train,y_train)
#dt.compile(x_trqin)

#predicting the value on testing data
y_pred=dt.predict(x_test)

#ploting the data
from sklearn.metrics import confusion_matrix
conf_mat=confusion_matrix(y_test,y_pred)
print(conf_mat)
accuracy=dt.score(x_test,y_test)
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")

joblib.dump(dt, 'heart_disease_dt_model.pkl')

from concrete.ml.sklearn import DecisionTreeClassifier as ConcreteDecisionTreeClassifier
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBClassifier

fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10) #de FHE
fhe_compatible.compile(x_train)






#### server
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer

# Setup the development environment
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
dev.save()

# Setup the server
server = FHEModelServer(path_dir=fhe_directory)
server.load()