schuldt-ogre
initial commit for client frontend
67244f5
raw
history blame
14.8 kB
from concrete.ml.deployment import FHEModelClient
from pathlib import Path
import numpy as np
import gradio as gr
import requests
import json
from typing import List
# Define possible categories for fields without predefined categories
additional_categories = {
"Gender": ["Male", "Female", "Other"],
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
"Smoking_Status": ["Never", "Former", "Current"],
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"],
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
"Functional_Status": ["Independent", "Assisted", "Dependent"],
"Previous_Trial_Participation": ["Yes", "No"]
}
# Define the input components for the researcher form
min_age_input = gr.Number(label="Minimum Age", value=18)
max_age_input = gr.Number(label="Maximum Age", value=100)
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender")
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity")
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location")
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)")
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications")
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies")
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments")
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0)
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=300)
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=80)
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=200)
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=40)
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=120)
min_bmi_input = gr.Number(label="Minimum BMI", value=10)
max_bmi_input = gr.Number(label="Maximum BMI", value=50)
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status")
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption")
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits")
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet")
min_condition_severity_input = gr.Number(label="Minimum Condition Severity", value=1)
max_condition_severity_input = gr.Number(label="Maximum Condition Severity", value=10)
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status")
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation")
def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
"""Encodes a list of categorical values into their corresponding indices based on additional_categories."""
sub_cats = additional_categories.get(category_name, [])
encoded_data = []
for value in data:
if value in sub_cats:
encoded_data.append(sub_cats.index(value) + 1) # Adding 1 to avoid index 0 for valid entries
else:
encoded_data.append(0) # Encode unmatched as 0
return encoded_data
def process_researcher_data(
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments,
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic,
min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption,
exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation
):
# Encode categorical data
encoded_gender = encode_categorical_data(gender, "Gender")
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity")
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location")
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10")
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status")
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption")
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits")
encoded_diet = encode_categorical_data(diet, "Diet")
encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status")
encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation")
# Create a list of requirements
requirements = []
# Add numerical requirements
if min_age is not None:
requirements.append({
"column_name": "Age",
"value": int(min_age),
"comparison_type": "greater_than"
})
if max_age is not None:
requirements.append({
"column_name": "Age",
"value": int(max_age),
"comparison_type": "less_than"
})
if min_blood_glucose_level is not None:
requirements.append({
"column_name": "Blood_Glucose_Level",
"value": int(min_blood_glucose_level),
"comparison_type": "greater_than"
})
if max_blood_glucose_level is not None:
requirements.append({
"column_name": "Blood_Glucose_Level",
"value": int(max_blood_glucose_level),
"comparison_type": "less_than"
})
if min_blood_pressure_systolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Systolic",
"value": int(min_blood_pressure_systolic),
"comparison_type": "greater_than"
})
if max_blood_pressure_systolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Systolic",
"value": int(max_blood_pressure_systolic),
"comparison_type": "less_than"
})
if min_blood_pressure_diastolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Diastolic",
"value": int(min_blood_pressure_diastolic),
"comparison_type": "greater_than"
})
if max_blood_pressure_diastolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Diastolic",
"value": int(max_blood_pressure_diastolic),
"comparison_type": "less_than"
})
if min_bmi is not None:
requirements.append({
"column_name": "BMI",
"value": float(min_bmi),
"comparison_type": "greater_than"
})
if max_bmi is not None:
requirements.append({
"column_name": "BMI",
"value": float(max_bmi),
"comparison_type": "less_than"
})
if min_condition_severity is not None:
requirements.append({
"column_name": "Condition_Severity",
"value": int(min_condition_severity),
"comparison_type": "greater_than"
})
if max_condition_severity is not None:
requirements.append({
"column_name": "Condition_Severity",
"value": int(max_condition_severity),
"comparison_type": "less_than"
})
# Add categorical requirements
for gender_value in encoded_gender:
if gender_value > 0:
requirements.append({
"column_name": "Gender",
"value": gender_value,
"comparison_type": "equal"
})
for ethnicity_value in encoded_ethnicity:
if ethnicity_value > 0:
requirements.append({
"column_name": "Ethnicity",
"value": ethnicity_value,
"comparison_type": "equal"
})
for location_value in encoded_geographic_location:
if location_value > 0:
requirements.append({
"column_name": "Geographic_Location",
"value": location_value,
"comparison_type": "equal"
})
for diagnosis_value in encoded_diagnoses_icd10:
if diagnosis_value > 0:
requirements.append({
"column_name": "Diagnoses_ICD10",
"value": diagnosis_value,
"comparison_type": "equal"
})
for smoking_status_value in encoded_smoking_status:
if smoking_status_value > 0:
requirements.append({
"column_name": "Smoking_Status",
"value": smoking_status_value,
"comparison_type": "equal"
})
for alcohol_value in encoded_alcohol_consumption:
if alcohol_value > 0:
requirements.append({
"column_name": "Alcohol_Consumption",
"value": alcohol_value,
"comparison_type": "equal"
})
for exercise_value in encoded_exercise_habits:
if exercise_value > 0:
requirements.append({
"column_name": "Exercise_Habits",
"value": exercise_value,
"comparison_type": "equal"
})
for diet_value in encoded_diet:
if diet_value > 0:
requirements.append({
"column_name": "Diet",
"value": diet_value,
"comparison_type": "equal"
})
for status in encoded_functional_status:
if status > 0:
requirements.append({
"column_name": "Functional_Status",
"value": status,
"comparison_type": "equal"
})
for participation in encoded_previous_trial_participation:
if participation > 0:
requirements.append({
"column_name": "Previous_Trial_Participation",
"value": participation,
"comparison_type": "equal"
})
# Encode and add non-categorical fields like medications, allergies, previous treatments
for medication in medications:
encoded_medications = encode_categorical_data([medication], "Medications")
for med_value in encoded_medications:
if med_value > 0:
requirements.append({
"column_name": "Medications",
"value": med_value,
"comparison_type": "equal"
})
for allergy in allergies:
encoded_allergies = encode_categorical_data([allergy], "Allergies")
for allergy_value in encoded_allergies:
if allergy_value > 0:
requirements.append({
"column_name": "Allergies",
"value": allergy_value,
"comparison_type": "equal"
})
for treatment in previous_treatments:
encoded_treatments = encode_categorical_data([treatment], "Previous_Treatments")
for treatment_value in encoded_treatments:
if treatment_value > 0:
requirements.append({
"column_name": "Previous_Treatments",
"value": treatment_value,
"comparison_type": "equal"
})
# Construct the payload as a regular dictionary
payload = {
"model_name": "fhe_model_v1",
"requirements": requirements
}
# turn the payload into a JSON object
payload = json.dumps(payload)
print("Payload:", payload)
# Store the server's URL
SERVER_URL = "https://ppaihack-match.azurewebsites.net/requirements/create"
# Make the request to the server
try:
res = requests.post(SERVER_URL, json=payload)
res.raise_for_status() # Raise an error for bad status codes
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}") # For debugging
return f"HTTP error occurred: {http_err}"
except Exception as err:
print(f"Other error occurred: {err}") # For debugging
return f"Other error occurred: {err}"
# Get the response from the server
try:
response = res.json()
print("Server response:", response)
except ValueError:
print("Response is not in JSON format.")
return "Response is not in JSON format."
return response.get("message", "No message received from server")
# Create the Gradio interface for researchers
researcher_demo = gr.Interface(
fn=process_researcher_data,
inputs=[
min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input,
medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input,
max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input,
min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input,
smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input,
min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input
],
outputs="text",
title="Clinical Researcher Criteria Form",
description="Please enter the criteria for the type of patients you are looking for."
)
# Launch the researcher interface with a public link
if __name__ == "__main__":
researcher_demo.launch(share=True)