Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
File size: 14,849 Bytes
ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 ce70f59 67244f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
from concrete.ml.deployment import FHEModelClient
from pathlib import Path
import numpy as np
import gradio as gr
import requests
import json
from typing import List
# Define possible categories for fields without predefined categories
additional_categories = {
"Gender": ["Male", "Female", "Other"],
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
"Smoking_Status": ["Never", "Former", "Current"],
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"],
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
"Functional_Status": ["Independent", "Assisted", "Dependent"],
"Previous_Trial_Participation": ["Yes", "No"]
}
# Define the input components for the researcher form
min_age_input = gr.Number(label="Minimum Age", value=18)
max_age_input = gr.Number(label="Maximum Age", value=100)
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender")
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity")
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location")
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)")
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications")
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies")
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments")
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0)
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=300)
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=80)
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=200)
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=40)
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=120)
min_bmi_input = gr.Number(label="Minimum BMI", value=10)
max_bmi_input = gr.Number(label="Maximum BMI", value=50)
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status")
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption")
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits")
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet")
min_condition_severity_input = gr.Number(label="Minimum Condition Severity", value=1)
max_condition_severity_input = gr.Number(label="Maximum Condition Severity", value=10)
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status")
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation")
def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
"""Encodes a list of categorical values into their corresponding indices based on additional_categories."""
sub_cats = additional_categories.get(category_name, [])
encoded_data = []
for value in data:
if value in sub_cats:
encoded_data.append(sub_cats.index(value) + 1) # Adding 1 to avoid index 0 for valid entries
else:
encoded_data.append(0) # Encode unmatched as 0
return encoded_data
def process_researcher_data(
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments,
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic,
min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption,
exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation
):
# Encode categorical data
encoded_gender = encode_categorical_data(gender, "Gender")
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity")
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location")
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10")
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status")
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption")
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits")
encoded_diet = encode_categorical_data(diet, "Diet")
encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status")
encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation")
# Create a list of requirements
requirements = []
# Add numerical requirements
if min_age is not None:
requirements.append({
"column_name": "Age",
"value": int(min_age),
"comparison_type": "greater_than"
})
if max_age is not None:
requirements.append({
"column_name": "Age",
"value": int(max_age),
"comparison_type": "less_than"
})
if min_blood_glucose_level is not None:
requirements.append({
"column_name": "Blood_Glucose_Level",
"value": int(min_blood_glucose_level),
"comparison_type": "greater_than"
})
if max_blood_glucose_level is not None:
requirements.append({
"column_name": "Blood_Glucose_Level",
"value": int(max_blood_glucose_level),
"comparison_type": "less_than"
})
if min_blood_pressure_systolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Systolic",
"value": int(min_blood_pressure_systolic),
"comparison_type": "greater_than"
})
if max_blood_pressure_systolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Systolic",
"value": int(max_blood_pressure_systolic),
"comparison_type": "less_than"
})
if min_blood_pressure_diastolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Diastolic",
"value": int(min_blood_pressure_diastolic),
"comparison_type": "greater_than"
})
if max_blood_pressure_diastolic is not None:
requirements.append({
"column_name": "Blood_Pressure_Diastolic",
"value": int(max_blood_pressure_diastolic),
"comparison_type": "less_than"
})
if min_bmi is not None:
requirements.append({
"column_name": "BMI",
"value": float(min_bmi),
"comparison_type": "greater_than"
})
if max_bmi is not None:
requirements.append({
"column_name": "BMI",
"value": float(max_bmi),
"comparison_type": "less_than"
})
if min_condition_severity is not None:
requirements.append({
"column_name": "Condition_Severity",
"value": int(min_condition_severity),
"comparison_type": "greater_than"
})
if max_condition_severity is not None:
requirements.append({
"column_name": "Condition_Severity",
"value": int(max_condition_severity),
"comparison_type": "less_than"
})
# Add categorical requirements
for gender_value in encoded_gender:
if gender_value > 0:
requirements.append({
"column_name": "Gender",
"value": gender_value,
"comparison_type": "equal"
})
for ethnicity_value in encoded_ethnicity:
if ethnicity_value > 0:
requirements.append({
"column_name": "Ethnicity",
"value": ethnicity_value,
"comparison_type": "equal"
})
for location_value in encoded_geographic_location:
if location_value > 0:
requirements.append({
"column_name": "Geographic_Location",
"value": location_value,
"comparison_type": "equal"
})
for diagnosis_value in encoded_diagnoses_icd10:
if diagnosis_value > 0:
requirements.append({
"column_name": "Diagnoses_ICD10",
"value": diagnosis_value,
"comparison_type": "equal"
})
for smoking_status_value in encoded_smoking_status:
if smoking_status_value > 0:
requirements.append({
"column_name": "Smoking_Status",
"value": smoking_status_value,
"comparison_type": "equal"
})
for alcohol_value in encoded_alcohol_consumption:
if alcohol_value > 0:
requirements.append({
"column_name": "Alcohol_Consumption",
"value": alcohol_value,
"comparison_type": "equal"
})
for exercise_value in encoded_exercise_habits:
if exercise_value > 0:
requirements.append({
"column_name": "Exercise_Habits",
"value": exercise_value,
"comparison_type": "equal"
})
for diet_value in encoded_diet:
if diet_value > 0:
requirements.append({
"column_name": "Diet",
"value": diet_value,
"comparison_type": "equal"
})
for status in encoded_functional_status:
if status > 0:
requirements.append({
"column_name": "Functional_Status",
"value": status,
"comparison_type": "equal"
})
for participation in encoded_previous_trial_participation:
if participation > 0:
requirements.append({
"column_name": "Previous_Trial_Participation",
"value": participation,
"comparison_type": "equal"
})
# Encode and add non-categorical fields like medications, allergies, previous treatments
for medication in medications:
encoded_medications = encode_categorical_data([medication], "Medications")
for med_value in encoded_medications:
if med_value > 0:
requirements.append({
"column_name": "Medications",
"value": med_value,
"comparison_type": "equal"
})
for allergy in allergies:
encoded_allergies = encode_categorical_data([allergy], "Allergies")
for allergy_value in encoded_allergies:
if allergy_value > 0:
requirements.append({
"column_name": "Allergies",
"value": allergy_value,
"comparison_type": "equal"
})
for treatment in previous_treatments:
encoded_treatments = encode_categorical_data([treatment], "Previous_Treatments")
for treatment_value in encoded_treatments:
if treatment_value > 0:
requirements.append({
"column_name": "Previous_Treatments",
"value": treatment_value,
"comparison_type": "equal"
})
# Construct the payload as a regular dictionary
payload = {
"model_name": "fhe_model_v1",
"requirements": requirements
}
# turn the payload into a JSON object
payload = json.dumps(payload)
print("Payload:", payload)
# Store the server's URL
SERVER_URL = "https://ppaihack-match.azurewebsites.net/requirements/create"
# Make the request to the server
try:
res = requests.post(SERVER_URL, json=payload)
res.raise_for_status() # Raise an error for bad status codes
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}") # For debugging
return f"HTTP error occurred: {http_err}"
except Exception as err:
print(f"Other error occurred: {err}") # For debugging
return f"Other error occurred: {err}"
# Get the response from the server
try:
response = res.json()
print("Server response:", response)
except ValueError:
print("Response is not in JSON format.")
return "Response is not in JSON format."
return response.get("message", "No message received from server")
# Create the Gradio interface for researchers
researcher_demo = gr.Interface(
fn=process_researcher_data,
inputs=[
min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input,
medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input,
max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input,
min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input,
smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input,
min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input
],
outputs="text",
title="Clinical Researcher Criteria Form",
description="Please enter the criteria for the type of patients you are looking for."
)
# Launch the researcher interface with a public link
if __name__ == "__main__":
researcher_demo.launch(share=True) |