Spaces:
Runtime error
Runtime error
File size: 7,221 Bytes
e07b55c dd8b714 be74cf1 dd8b714 4d743ae dd8b714 be74cf1 dd8b714 be74cf1 dd8b714 be74cf1 dd8b714 be74cf1 dd8b714 be74cf1 dd8b714 be74cf1 dd8b714 be74cf1 dd8b714 be74cf1 e07b55c 4d743ae 72d9364 be74cf1 72d9364 4d743ae be74cf1 e07b55c 4d743ae e07b55c dd8b714 be74cf1 dd8b714 be74cf1 4d743ae dd8b714 4d743ae dd8b714 4d743ae 5a70e6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import time
import os
from pathlib import Path
import subprocess
from concrete.ml.deployment import FHEModelClient
from requests import head
import numpy
import os
from pathlib import Path
import requests
import json
import base64
import subprocess
import shutil
import time
import pandas as pd
import pickle
import numpy as np
import pdb
# This repository's directory
REPO_DIR = Path(__file__).parent
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
# if not exists, create a directory for the FHE keys called .fhe_keys
if not os.path.exists(".fhe_keys"):
os.mkdir(".fhe_keys")
# if not exists, create a directory for the tmp files called tmp
if not os.path.exists("tmp"):
os.mkdir("tmp")
# Wait 4 sec for the server to start
time.sleep(4)
# Encrypted data limit for the browser to display
# (encrypted data is too large to display in the browser)
ENCRYPTED_DATA_BROWSER_LIMIT = 500
N_USER_KEY_STORED = 20
def clean_tmp_directory():
# Allow 20 user keys to be stored.
# Once that limitation is reached, deleted the oldest.
path_sub_directories = sorted(
[f for f in Path(".fhe_keys/").iterdir() if f.is_dir()], key=os.path.getmtime
)
user_ids = []
if len(path_sub_directories) > N_USER_KEY_STORED:
n_files_to_delete = len(path_sub_directories) - N_USER_KEY_STORED
for p in path_sub_directories[:n_files_to_delete]:
user_ids.append(p.name)
shutil.rmtree(p)
list_files_tmp = Path("tmp/").iterdir()
# Delete all files related to user_id
for file in list_files_tmp:
for user_id in user_ids:
if file.name.endswith(f"{user_id}.npy"):
file.unlink()
def keygen():
# Clean tmp directory if needed
clean_tmp_directory()
print("Initializing FHEModelClient...")
# Let's create a user_id
user_id = numpy.random.randint(0, 2**32)
fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{user_id}")
fhe_api.load()
# Generate a fresh key
fhe_api.generate_private_and_evaluation_keys(force=True)
evaluation_key = fhe_api.get_serialized_evaluation_keys()
numpy.save(f"tmp/tmp_evaluation_key_{user_id}.npy", evaluation_key)
return [list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT], user_id]
def encode_quantize_encrypt(test_file, eval_key):
ugly = ['Machine', 'SizeOfOptionalHeader', 'Characteristics',
'MajorLinkerVersion', 'MinorLinkerVersion', 'SizeOfCode',
'SizeOfInitializedData', 'SizeOfUninitializedData',
'AddressOfEntryPoint', 'BaseOfCode', 'BaseOfData', 'ImageBase',
'SectionAlignment', 'FileAlignment', 'MajorOperatingSystemVersion',
'MinorOperatingSystemVersion', 'MajorImageVersion', 'MinorImageVersion',
'MajorSubsystemVersion', 'MinorSubsystemVersion', 'SizeOfImage',
'SizeOfHeaders', 'CheckSum', 'Subsystem', 'DllCharacteristics',
'SizeOfStackReserve', 'SizeOfStackCommit', 'SizeOfHeapReserve',
'SizeOfHeapCommit', 'LoaderFlags', 'NumberOfRvaAndSizes', 'SectionsNb',
'SectionsMeanEntropy', 'SectionsMinEntropy', 'SectionsMaxEntropy',
'SectionsMeanRawsize', 'SectionsMinRawsize',
'SectionsMeanVirtualsize', 'SectionsMinVirtualsize',
'SectionMaxVirtualsize', 'ImportsNbDLL', 'ImportsNb',
'ImportsNbOrdinal', 'ExportNb', 'ResourcesNb', 'ResourcesMeanEntropy',
'ResourcesMinEntropy', 'ResourcesMaxEntropy', 'ResourcesMeanSize',
'ResourcesMinSize', 'ResourcesMaxSize', 'LoadConfigurationSize',
'VersionInformationSize']
fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{eval_key}")
fhe_api.load()
from PE_main import extract_infos
# expect [1, 53] but we get (53)
# pdb.set_trace()
# features = pickle.loads(open(os.path.join("features.pkl"), "rb").read())
encodings = extract_infos(test_file)
encodings = list(map(lambda x: encodings[x], ugly))
encodings = np.array(encodings).reshape(1, -1)
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8)
encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings)
numpy.save(
f"tmp/tmp_encrypted_quantized_encoding_{eval_key[1]}.npy",
encrypted_quantized_encoding,
)
# Compute size
encrypted_quantized_encoding_shorten = list(encrypted_quantized_encoding)[:ENCRYPTED_DATA_BROWSER_LIMIT]
encrypted_quantized_encoding_shorten_hex = "".join(f"{i:02x}" for i in encrypted_quantized_encoding_shorten)
return (encodings[0],quantized_encodings[0],encrypted_quantized_encoding_shorten_hex)
def run_fhe(user_id):
encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy")
encrypted_quantized_encoding = numpy.load(encoded_data_path)
# Read evaluation_key from the file
evaluation_key = numpy.load(f"tmp/tmp_evaluation_key_{user_id}.npy")
# Use base64 to encode the encodings and evaluation key
encrypted_quantized_encoding = base64.b64encode(encrypted_quantized_encoding).decode()
encoded_evaluation_key = base64.b64encode(evaluation_key).decode()
query = {}
query["evaluation_key"] = encoded_evaluation_key
query["encrypted_encoding"] = encrypted_quantized_encoding
headers = {"Content-type": "application/json"}
response = requests.post(
"http://localhost:8000/predict",
data=json.dumps(query),
headers=headers,
)
encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"])
numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction)
encrypted_prediction_shorten = list(encrypted_prediction)[:ENCRYPTED_DATA_BROWSER_LIMIT]
encrypted_prediction_shorten_hex = "".join(f"{i:02x}" for i in encrypted_prediction_shorten)
return encrypted_prediction_shorten_hex
def decrypt_prediction(user_id):
encoded_data_path = Path(f"tmp/tmp_encrypted_prediction_{user_id}.npy")
# Read encrypted_prediction from the file
encrypted_prediction = numpy.load(encoded_data_path).tobytes()
fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{user_id}")
fhe_api.load()
# We need to retrieve the private key that matches the client specs (see issue #18)
fhe_api.generate_private_and_evaluation_keys(force=False)
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction)
return predictions
def process_pipeline(test_file):
eval_key = keygen()
encodings = encode_quantize_encrypt(test_file, eval_key)
encrypted_quantized_encoding = run_fhe(eval_key[1])
encrypted_prediction = decrypt_prediction(eval_key[1])
return eval_key, encodings, encrypted_quantized_encoding, encrypted_prediction
if __name__ == "__main__":
app = gr.Interface(
fn=process_pipeline,
inputs=[
gr.File(label="Test File"),
],
outputs=[
gr.Textbox(label="Evaluation Key"),
gr.Textbox(label="Encodings"),
gr.Textbox(label="Encrypted Quantized Encoding"),
gr.Textbox(label="Encrypted Prediction"),
],
title="FHE Model",
description="This is a FHE Model",
)
app.launch(share=True)
|