File size: 4,525 Bytes
caf3054
 
 
c52929a
caf3054
 
 
 
 
 
 
 
 
 
 
d5805cb
caf3054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04727
0f46926
 
 
 
 
 
 
 
 
 
 
 
 
caf3054
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import time
import numpy as np
import pandas as pd
import gradio as gr
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer, util
from pythainlp import Tokenizer
import pickle
import re
from pythainlp.tokenize import sent_tokenize
from unstructured.partition.html import partition_html

url = "https://www.dataxet.co/media-landscape/2024-th"
elements = partition_html(url=url)
context = [str(element) for element in elements  if len(str(element)) >60]

DEFAULT_MODEL = 'wangchanberta'
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'

MODEL_DICT = {
    'wangchanberta': 'Chananchida/wangchanberta-xet_ref-params',
    'wangchanberta-hyp': 'Chananchida/wangchanberta-xet_hyp-params',
}

EMBEDDINGS_PATH = 'data/embeddings.pkl'

def load_model(model_name=DEFAULT_MODEL):
    model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
    tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
    print('Load model done')
    return model, tokenizer

def load_embedding_model(model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL):
    if torch.cuda.is_available():
        embedding_model = SentenceTransformer(model_name, device='cuda')
    else:
        embedding_model = SentenceTransformer(model_name)
    print('Load sentence embedding model done')
    return embedding_model


def set_index(vector):
    if torch.cuda.is_available():
        res = faiss.StandardGpuResources()
        index = faiss.IndexFlatL2(vector.shape[1])
        gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index)
        gpu_index_flat.add(vector)
        index = gpu_index_flat
    else:
        index = faiss.IndexFlatL2(vector.shape[1])
        index.add(vector)
    return index


def get_embeddings(embedding_model, text_list):
    return embedding_model.encode(text_list)


def prepare_sentences_vector(encoded_list):
    encoded_list = [i.reshape(1, -1) for i in encoded_list]
    encoded_list = np.vstack(encoded_list).astype('float32')
    encoded_list = normalize(encoded_list)
    return encoded_list

def load_embeddings(file_path=EMBEDDINGS_PATH):
    with open(file_path, "rb") as fIn:
        stored_data = pickle.load(fIn)
        stored_sentences = stored_data['sentences']
        stored_embeddings = stored_data['embeddings']
    print('Load (questions) embeddings done')
    return stored_embeddings

def faiss_search(index, question_vector, k=1):
    distances, indices = index.search(question_vector, k)
    return distances,indices

def model_pipeline(model, tokenizer, question, context):
    inputs = tokenizer(question, context, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    answer_start_index = outputs.start_logits.argmax()
    answer_end_index = outputs.end_logits.argmax()
    predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
    Answer = tokenizer.decode(predict_answer_tokens)
    return Answer.replace('<unk>','@')

def predict_test(model, tokenizer, embedding_model, context, question, index):  # sent_tokenize pythainlp
    t = time.time()
    question = question.strip()
    question_vector = get_embeddings(embedding_model, question)
    question_vector = prepare_sentences_vector([question_vector])
    distances, indices = faiss_search(index, question_vector, 3)  # Retrieve top 3 indices

    most_similar_contexts = ''
    for i in range(3):  # Loop through top 3 indices
        most_sim_context = context[indices[0][i]].strip()
        # most_similar_contexts.append(most_sim_context)
        most_similar_contexts += str(i)+': '+most_sim_context + "\n\n"

    return most_similar_contexts



if __name__ == "__main__":
    embedding_model = load_embedding_model()
    index = set_index(prepare_sentences_vector(get_embeddings(embedding_model, context)))

    def chat_interface(question, history):
        response = predict_test(model, tokenizer, embedding_model, context, question, index)
        return response

    examples=['ภูมิทัศน์สื่อไทยในปี 2567 มีแนวโน้มว่า ',
               'Fragmentation คือ',
               'ติ๊กต๊อก คือ',
               'รายงานจาก Reuters Institute'
              ]
    interface = gr.ChatInterface(fn=chat_interface,
                                    examples=examples)

    interface.launch()