dataxet-chatbot / app.py
Sirinoot's picture
Update app.py
8164131 verified
raw
history blame
8.99 kB
# @title web interface demo
import random
import gradio as gr
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer, util
from pythainlp import Tokenizer
import pickle
import re
from pythainlp.tokenize import sent_tokenize
DEFAULT_MODEL = 'wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'
MODEL_DICT = {
'wangchanberta': 'Chananchida/wangchanberta-xet_ref-params',
'wangchanberta-hyp': 'Chananchida/wangchanberta-xet_hyp-params',
}
EMBEDDINGS_PATH = 'data/embeddings.pkl'
DATA_PATH='data/dataset.xlsx'
def load_data(path=DATA_PATH):
df = pd.read_excel(path, sheet_name='Default')
df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
print(len(df))
print('Load data done')
return df
def load_model(model_name=DEFAULT_MODEL):
model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
print('Load model done')
return model, tokenizer
def load_embedding_model(model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL):
# if torch.cuda.is_available():
# embedding_model = SentenceTransformer(model_name, device='cuda')
# else:
embedding_model = SentenceTransformer(model_name)
print('Load sentence embedding model done')
return embedding_model
def set_index(vector):
if torch.cuda.is_available():
res = faiss.StandardGpuResources()
index = faiss.IndexFlatL2(vector.shape[1])
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index)
gpu_index_flat.add(vector)
index = gpu_index_flat
else:
index = faiss.IndexFlatL2(vector.shape[1])
index.add(vector)
return index
def get_embeddings(embedding_model, text_list):
return embedding_model.encode(text_list)
def prepare_sentences_vector(encoded_list):
encoded_list = [i.reshape(1, -1) for i in encoded_list]
encoded_list = np.vstack(encoded_list).astype('float32')
encoded_list = normalize(encoded_list)
return encoded_list
def store_embeddings(df, embeddings):
with open('embeddings.pkl', "wb") as fOut:
pickle.dump({'sentences': df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
print('Store embeddings done')
def load_embeddings(file_path=EMBEDDINGS_PATH):
with open(file_path, "rb") as fIn:
stored_data = pickle.load(fIn)
stored_sentences = stored_data['sentences']
stored_embeddings = stored_data['embeddings']
print('Load (questions) embeddings done')
return stored_embeddings
def model_pipeline(model, tokenizer, question, similar_context):
inputs = tokenizer(question, similar_context, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
Answer = tokenizer.decode(predict_answer_tokens)
return Answer.replace('<unk>','@')
def faiss_search(index, question_vector, k=1):
distances, indices = index.search(question_vector, k)
return distances,indices
def create_segment_index(vector):
segment_index = faiss.IndexFlatL2(vector.shape[1])
segment_index.add(vector)
return segment_index
def predict_faiss(model, tokenizer, embedding_model, df, question, index):
t = time.time()
question = question.strip()
question_vector = get_embeddings(embedding_model, question)
question_vector = prepare_sentences_vector([question_vector])
distances,indices = faiss_search(index, question_vector)
Answers = [df['Answer'][i] for i in indices[0]]
_time = time.time() - t
output = {
"user_question": question,
"answer": Answers[0],
"totaltime": round(_time, 3),
"score": round(distances[0][0], 4)
}
return output
def predict(model, tokenizer, embedding_model, df, question, index):
t = time.time()
question = question.strip()
question_vector = get_embeddings(embedding_model, question)
question_vector = prepare_sentences_vector([question_vector])
distances,indices = faiss_search(index, question_vector)
# Answer = model_pipeline(model, tokenizer, df['Question'][indices[0][0]], df['Context'][indices[0][0]])
Answer = model_pipeline(model, tokenizer, question, df['Context'][indices[0][0]])
_time = time.time() - t
output = {
"user_question": question,
"answer": Answer,
"totaltime": round(_time, 3),
"distance": round(distances[0][0], 4)
}
return Answer
def predict_test(model, tokenizer, embedding_model, df, question, index): # sent_tokenize pythainlp
t = time.time()
question = question.strip()
question_vector = get_embeddings(embedding_model, question)
question_vector = prepare_sentences_vector([question_vector])
distances,indices = faiss_search(index, question_vector)
mostSimContext = df['Context'][indices[0][0]]
pattern = r'(?<=\s{10}).*'
matches = re.search(pattern, mostSimContext, flags=re.DOTALL)
if matches:
mostSimContext = matches.group(0)
mostSimContext = mostSimContext.strip()
mostSimContext = re.sub(r'\s+', ' ', mostSimContext)
segments = sent_tokenize(mostSimContext, engine="crfcut")
segment_embeddings = get_embeddings(embedding_model, segments)
segment_embeddings = prepare_sentences_vector(segment_embeddings)
segment_index = create_segment_index(segment_embeddings)
_distances,_indices = faiss_search(segment_index, question_vector)
mostSimSegment = segments[_indices[0][0]]
Answer = model_pipeline(model, tokenizer,question,mostSimSegment)
if len(Answer) <= 2:
Answer = mostSimSegment
# Find the start and end indices of mostSimSegment within mostSimContext
start_index = mostSimContext.find(Answer)
end_index = start_index + len(Answer)
print(f"answer {len(Answer)} => {Answer} || startIndex =>{start_index} || endIndex =>{end_index}")
print(f"mostSimContext{len(mostSimContext)}=>{mostSimContext}\nsegments{len(segments)}=>{segments}\nmostSimSegment{len(mostSimSegment)}=>{mostSimSegment}")
_time = time.time() - t
output = {
"user_question": question,
"answer": df['Answer'][indices[0][0]],
"totaltime": round(_time, 3),
"distance": round(distances[0][0], 4),
"highlight_start": start_index,
"highlight_end": end_index
}
return output
def highlight_text(text, start_index, end_index):
if start_index < 0:
start_index = 0
if end_index > len(text):
end_index = len(text)
highlighted_text = ""
for i, char in enumerate(text):
if i == start_index:
highlighted_text += "<mark>"
highlighted_text += char
if i == end_index - 1:
highlighted_text += "</mark>"
return highlighted_text
def chat_interface_before(question, history):
response = predict(model, tokenizer, embedding_model, df, question, index)
return response
def chat_interface_after(question, history):
response = predict_test(model, tokenizer, embedding_model, df, question, index)
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
return highlighted_answer
examples=[
'ขอเลขที่บัญชีของบริษัทหน่อย',
'บริษัทตั้งอยู่ที่ถนนอะไร',
'ขอช่องทางติดตามข่าวสารทาง Line หน่อย',
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม',
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter',
# 'ช่องทางติดตามข่าวสารของเรา',
]
demo_before = gr.ChatInterface(fn=chat_interface_before,
examples=examples)
demo_after = gr.ChatInterface(fn=chat_interface_after,
examples=examples)
interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"])
if __name__ == "__main__":
# Load your model, tokenizer, data, and index here...
df = load_data()
model, tokenizer = load_model('wangchanberta-hyp')
embedding_model = load_embedding_model()
index = set_index(prepare_sentences_vector(load_embeddings(EMBEDDINGS_PATH)))
interface.launch()