Update app.py
Browse files
app.py
CHANGED
@@ -57,41 +57,23 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
57 |
|
58 |
|
59 |
@spaces.GPU(enable_queue=True)
|
60 |
-
def generate(
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
randomize_seed: bool = False,
|
69 |
-
use_resolution_binning: bool = True,
|
70 |
-
progress=gr.Progress(track_tqdm=True),
|
71 |
-
):
|
72 |
-
pipe.to(device)
|
73 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
74 |
-
generator = torch.Generator().manual_seed(seed)
|
75 |
-
|
76 |
-
if not use_negative_prompt:
|
77 |
-
negative_prompt = None # type: ignore
|
78 |
|
79 |
images = pipe(
|
80 |
prompt=prompt,
|
81 |
negative_prompt=negative_prompt,
|
82 |
-
width=width,
|
83 |
-
height=height,
|
84 |
guidance_scale=guidance_scale,
|
85 |
-
num_inference_steps=
|
86 |
-
generator=generator,
|
87 |
-
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
88 |
-
use_resolution_binning=use_resolution_binning,
|
89 |
-
output_type="pil",
|
90 |
).images
|
|
|
91 |
|
92 |
-
image_paths = [save_image(img) for img in images]
|
93 |
-
print(image_paths)
|
94 |
-
return image_paths, seed
|
95 |
|
96 |
|
97 |
examples = [
|
|
|
57 |
|
58 |
|
59 |
@spaces.GPU(enable_queue=True)
|
60 |
+
def generate(prompt, negative_prompt, guidance_scale, num_inference_steps):
|
61 |
+
# Ensure consistent data type
|
62 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
+
dtype = torch.float32 # or torch.float16 if you're using half precision
|
64 |
+
|
65 |
+
pipe = pipe.to(device)
|
66 |
+
pipe.text_encoder = pipe.text_encoder.to(dtype)
|
67 |
+
pipe.unet = pipe.unet.to(dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
images = pipe(
|
70 |
prompt=prompt,
|
71 |
negative_prompt=negative_prompt,
|
|
|
|
|
72 |
guidance_scale=guidance_scale,
|
73 |
+
num_inference_steps=num_inference_steps,
|
|
|
|
|
|
|
|
|
74 |
).images
|
75 |
+
return images[0]
|
76 |
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
examples = [
|