File size: 5,903 Bytes
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
88b1e11
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b1e11
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
 
88b1e11
 
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b1e11
 
81d65e8
 
 
88b1e11
81d65e8
 
 
 
 
 
 
 
 
 
 
88b1e11
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e31f91
88b1e11
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e31f91
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e31f91
81d65e8
 
88b1e11
 
81d65e8
 
 
 
 
 
 
 
 
 
 
 
 
88b1e11
 
 
81d65e8
 
 
 
88b1e11
 
 
 
 
 
 
81d65e8
 
 
 
 
88b1e11
81d65e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
import logging
import time
import gradio as gr
import torch
from transformers import pipeline

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

use_gpu = torch.cuda.is_available()


def generate_text(
    prompt: str,
    gen_length=64,
    num_beams=4,
    no_repeat_ngram_size=2,
    length_penalty=1.0,
    # perma params (not set by user)
    repetition_penalty=3.5,
    abs_max_length=512,
    verbose=False,
):
    """
    generate_text - generate text from a prompt using a text generation pipeline

    Args:
        prompt (str): the prompt to generate text from
        model_input (_type_): the text generation pipeline
        max_length (int, optional): the maximum length of the generated text. Defaults to 128.
        method (str, optional): the generation method. Defaults to "Sampling".
        verbose (bool, optional): the verbosity of the output. Defaults to False.

    Returns:
        str: the generated text
    """
    global generator
    logging.info(f"Generating text from prompt: {prompt}")
    st = time.perf_counter()

    input_tokens = generator.tokenizer(prompt)
    input_len = len(input_tokens["input_ids"])
    if input_len > abs_max_length:
        logging.info(f"Input too long {input_len} > {abs_max_length}, may cause errors")
    result = generator(
        prompt,
        max_length=gen_length + input_len,
        min_length=input_len + 4,
        num_beams=num_beams,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=no_repeat_ngram_size,
        length_penalty=length_penalty,
        do_sample=False,
        early_stopping=True,
        # tokenizer
        truncation=True,
    )  # generate
    response = result[0]["generated_text"]
    rt = time.perf_counter() - st
    if verbose:
        logging.info(f"Generated text: {response}")
    logging.info(f"Generation time: {rt:.2f}s")
    return response


def get_parser():
    """
    get_parser - a helper function for the argparse module
    """
    parser = argparse.ArgumentParser(
        description="Text Generation demo for postbot",
    )

    parser.add_argument(
        "-m",
        "--model",
        required=False,
        type=str,
        default="postbot/distilgpt2-emailgen",
        help="Pass an different huggingface model tag to use a custom model",
    )

    parser.add_argument(
        "-v",
        "--verbose",
        required=False,
        action="store_true",
        help="Verbose output",
    )
    return parser


default_prompt = """
Hello,

Following up on the bubblegum shipment."""

if __name__ == "__main__":
    logging.info("\n\n\nStarting new instance of app.py")
    args = get_parser().parse_args()
    logging.info(f"received args:\t{args}")
    model_tag = args.model
    verbose = args.verbose
    logging.info(f"Loading model: {model_tag}, use GPU = {use_gpu}")
    generator = pipeline(
        "text-generation",
        model_tag,
        device=0 if use_gpu else -1,
    )

    demo = gr.Blocks()

    logging.info("launching interface...")

    with demo:
        gr.Markdown("# Autocompleting Emails with Textgen - Demo")
        gr.Markdown(
            "Enter part of an email, and the model will autocomplete it for you! The model used is [postbot/distilgpt2-emailgen](https://huggingface.co/postbot/distilgpt2-emailgen)"
        )
        gr.Markdown("---")

        with gr.Column():

            gr.Markdown("## Generate Text")
            gr.Markdown(
                "Enter/edit the prompt and adjust the parameters as needed. Then press the Generate button!"
            )
            prompt_text = gr.Textbox(
                lines=4,
                label="Email Prompt",
                value=default_prompt,
            )
            num_gen_tokens = gr.Slider(
                label="Generation Tokens",
                value=64,
                maximum=128,
                minimum=32,
                step=16,
            )
            num_beams = gr.Radio(
                choices=[4, 8, 16],
                label="num beams",
                value=4,
            )
            no_repeat_ngram_size = gr.Radio(
                choices=[1, 2, 3, 4],
                label="no repeat ngram size",
                value=2,
            )
            length_penalty = gr.Slider(
                minimum=0.5, maximum=1.0, label="length penalty", value=0.8, step=0.1
            )
            generated_email = gr.Textbox(
                label="Generated Result",
                placeholder="The completed email will appear here",
            )

            generate_button = gr.Button(
                "Generate!",
            )
            gr.Markdown("---")

        with gr.Column():

            gr.Markdown("## About")
            gr.Markdown(
                "This model is a fine-tuned version of distilgpt2 on a dataset of 50k emails sourced from the internet, including the classic `aeslc` dataset."
            )
            gr.Markdown(
                "The intended use of this model is to provide suggestions to _auto-complete_ the rest of your email. Said another way, it should serve as a **tool to write predictable emails faster**. It is not intended to write entire emails; at least **some input** is required to guide the direction of the model.\n\nPlease verify any suggestions by the model for A) False claims and B) negation statements before accepting/sending something."
            )
            gr.Markdown("---")

        generate_button.click(
            fn=generate_text,
            inputs=[
                prompt_text,
                num_gen_tokens,
                num_beams,
                no_repeat_ngram_size,
                length_penalty,
            ],
            outputs=[generated_email],
        )

    demo.launch(
        enable_queue=True,
        share=True,  # for local testing
    )