File size: 29,025 Bytes
b810e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
---
title: RAG Evaluation
jupyter: python3
eval: false
---

```{python}
!pip install -q torch transformers transformers langchain sentence-transformers faiss-gpu openpyxl openai
```

```{python}
%reload_ext autoreload
%autoreload 2
%reload_ext dotenv
%dotenv
```

```{python}
from tqdm.notebook import tqdm
import pandas as pd
from typing import Optional, List, Tuple
from langchain_core.language_models import BaseChatModel
import json
import datasets

pd.set_option("display.max_colwidth", None)
```

### Load your knowledge base

```{python}
ds = datasets.load_dataset("m-ric/huggingface_doc", split="train")
```

# 1. Build a synthetic dataset for evaluation
We first build a synthetic dataset of questions and associated contexts. The method is to get elements from our knowledge base, and ask an LLM to generate questions based on these documents.

Then we setup other LLM agents to act as quality filters for the generated QA couples: each of them will act as the filter for a specific flaw.

### 1.1. Prepare source documents

```{python}
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document as LangchainDocument

langchain_docs = [
    LangchainDocument(page_content=doc["text"], metadata={"source": doc["source"]})
    for doc in tqdm(ds)
]


text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=2000,
    chunk_overlap=200,
    add_start_index=True,
    separators=["\n\n", "\n", ".", " ", ""],
)

docs_processed = []
for doc in langchain_docs:
    docs_processed += text_splitter.split_documents([doc])
```

### 1.2. Setup agents for question generation

We use [Mixtral](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) for QA couple generation because it it has excellent performance in leaderboards such as [Chatbot Arena](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).

```{python}
from langchain_community.llms import HuggingFaceHub

repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"

llm = HuggingFaceHub(
    repo_id=repo_id,
    task="text-generation",
    model_kwargs={
        "max_new_tokens": 512,
        "top_k": 30,
        "temperature": 0.1,
        "repetition_penalty": 1.03,
    },
)
```

```{python}
from langchain_community.chat_models import ChatHuggingFace

chat_model = ChatHuggingFace(llm=llm)
```

```{python}
from langchain.prompts import ChatPromptTemplate

QA_generation_prompt = """
Your task is to write a factoid question and an answer given a context.
Your factoid question should be answerable with a specific, concise piece of factual information from the context.
Your factoid question should be formulated in the same style as questions users could ask in a search engine.
This means that your factoid question MUST NOT mention something like "according to the passage" or "context".

Provide your answer as follows:

Output:::
Factoid question: (your factoid question)
Answer: (your answer to the factoid question)

Now here is the context.

Context: {context}\n
Output:::"""

QA_generation_prompt = ChatPromptTemplate.from_template(QA_generation_prompt)
QA_generation_agent = QA_generation_prompt | chat_model
```

Now let's generate our QA couples.
For this example, we generate only 10 QA couples and will load the rest from the Hub.

But for your specific knowledge base, given that you want to get at least ~100 test samples, and accounting for the fact that we will filter out around half of these with our critique agents later on, you should generate much more, in the >200 samples.

```{python}
import random

N_GENERATIONS = (
    10  # We intentionally generate only 10 QA couples here for cost and time considerations
)

print(f"Generating {N_GENERATIONS} QA couples...")
outputs = []
for context in tqdm(random.sample(langchain_docs, N_GENERATIONS)):
    # Generate QA couple
    output_QA_couple = QA_generation_agent.invoke({"context": context.page_content}).content
    try:
        question = output_QA_couple.split("Factoid question: ")[1].split("Answer: ")[0]
        answer = output_QA_couple.split("Answer: ")[1]
        outputs.append(
            {
                "context": context.page_content,
                "question": question,
                "answer": answer,
                "source_doc": context.metadata["source"],
            }
        )
    except:
        continue
```

```{python}
display(pd.DataFrame(outputs).head(1))
```

### 1.3. Setup critique agents

The questions generated by the previous agent can have many flaws: we should do a quality check before validating these questions.

We thus build critique agents that will rate each question on several criteria, given in [this paper](https://huggingface.co/papers/2312.10003):
- **Groundedness:** can the question be answered from the given context?
- **Relevance:** is the question relevant to users? For instance, `"What is the date when transformers 4.29.1 was released?"` is not relevant for ML practicioners.

One last failure case we've noticed is when a function is tailored for the particular setting where the question was generated, but undecipherable by itself, like `"What is the name of the function used in this guide?"`.
We also build a critique agent for this criteria:
- **Stand-alone**: is the question understandable free of any context, for someone with domain knowledge/Internet access? The opposite of this would be `What is the function used in this article?` for a question generated from a specific blog article.

We systematically score functions with all these agents, and whenever the score is too low for any one of the agents, we eliminate the question from our eval dataset.

πŸ’‘ ___When asking the agents to output a score, we first ask them to produce its rationale. This will help us verify scores, but most importantly, asking it to first output rationale gives the model more tokens to think and elaborate an answer before summarizing it into a single score token.___

We now build and run these critique agents.

```{python}
question_groundedness_critique_prompt = """
You will be given a context and a question.
Your task is to provide a 'total rating' scoring how well one can answer the given question unambiguously with the given context.
Give your answer on a scale of 1 to 5, where 1 means that the question is not answerable at all given the context, and 5 means that the question is clearly and unambiguously answerable with the context.

Provide your answer as follows:

Answer:::
Evaluation: (your rationale for the rating)
Total rating: (your rating)

Now here are the question and context.

Question: {question}\n
Context: {context}\n
Answer::: """

question_relevance_critique_prompt = """
You will be given a question.
Your task is to provide a 'total rating' representing how useful this question can be to machine learning developers building NLP applications with the Hugging Face ecosystem.
Give your answer on a scale of 1 to 5, where 1 means that the question is not useful at all, and 5 means that the question is extremely useful.

Provide your answer as follows:

Answer:::
Evaluation: (your rationale for the rating)
Total rating: (your rating)

Now here is the question.

Question: {question}\n
Answer::: """

question_standalone_critique_prompt = """
You will be given a question.
Your task is to provide a 'total rating' representing how context-independant this question is.
Give your answer on a scale of 1 to 5, where 1 means that the question only makes sense in a specific context, and 5 means that the question makes sense by itself.
For instance, if the question refers to a particular setting, like 'in the context' or 'in the document', the rating must be 1.
The questions can contain obscure technical nouns or acronyms like Gradio, Hub, Hugging Face or Space and still be a 5: it must simply be clear to an operator with access to documentation what the question is about.

Provide your answer as follows:

Answer:::
Evaluation: (your rationale for the rating)
Total rating: (your rating)

Now here is the question.

Question: {question}\n
Answer::: """

question_groundedness_critique_prompt = ChatPromptTemplate.from_template(
    question_groundedness_critique_prompt
)
question_groundedness_critique_agent = question_groundedness_critique_prompt | chat_model

question_relevance_critique_prompt = ChatPromptTemplate.from_template(
    question_relevance_critique_prompt
)
question_relevance_critique_agent = question_relevance_critique_prompt | chat_model

question_standalone_critique_prompt = ChatPromptTemplate.from_template(
    question_standalone_critique_prompt
)
question_standalone_critique_agent = question_standalone_critique_prompt | chat_model
```

```{python}
print("Generating critique for each QA couple...")
for output in tqdm(outputs):
    # Critique the generated QA couple
    question_groundedness_evaluation = question_groundedness_critique_agent.invoke(
        {"context": output["context"], "question": output["question"]}
    ).content
    question_relevance_evaluation = question_relevance_critique_agent.invoke(
        {"question": output["question"]}
    ).content
    question_standalone_evaluation = question_standalone_critique_agent.invoke(
        {"question": output["question"]}
    ).content

    try:
        groundedness_score = int(question_groundedness_evaluation.split("Total rating: ")[1][0])
        groundedness_eval = question_groundedness_evaluation.split("Total rating: ")[0].split(
            "Evaluation: "
        )[1]
        relevance_score = int(question_relevance_evaluation.split("Total rating: ")[1][0])
        relevance_eval = question_relevance_evaluation.split("Total rating: ")[0].split(
            "Evaluation: "
        )[1]
        standalone_score = int(question_standalone_evaluation.split("Total rating: ")[1][0])
        standalone_eval = question_standalone_evaluation.split("Total rating: ")[0].split(
            "Evaluation: "
        )[1]
        output.update(
            {
                "groundedness_score": groundedness_score,
                "groundedness_eval": groundedness_eval,
                "relevance_score": relevance_score,
                "relevance_eval": relevance_eval,
                "standalone_score": standalone_score,
                "standalone_eval": standalone_eval,
            }
        )
    except:
        continue
```

Now let us filter out bad questions based on our critique agent scores:

```{python}
import pandas as pd

pd.set_option("display.max_colwidth", None)

generated_questions = pd.DataFrame.from_dict(outputs)

print("Evaluation dataset before filtering:")
display(
    generated_questions[
        ["question", "answer", "groundedness_score", "relevance_score", "standalone_score"]
    ]
)
generated_questions = generated_questions.loc[
    (generated_questions["groundedness_score"] >= 4)
    & (generated_questions["relevance_score"] >= 4)
    & (generated_questions["standalone_score"] >= 4)
]
print("============================================")
print("Final evaluation dataset:")
display(
    generated_questions[
        ["question", "answer", "groundedness_score", "relevance_score", "standalone_score"]
    ]
)

eval_dataset = datasets.Dataset.from_pandas(
    generated_questions, split="train", preserve_index=False
)
```

Now our synthetic evaluation dataset is complete! We can evaluate different RAG systems on this evaluation dataset.

We have generated only a few QA couples here to reduce time and cost. But let's kick start the next part by loading a pre-generated dataset:

```{python}
eval_dataset = datasets.load_dataset("m-ric/huggingface_doc_qa_eval", split="train")
```

# 2. Build our RAG System

### 2.1. Preprocessing documents to build our vector database

- In this part, __we split the documents from our knowledge base into smaller chunks__: these will be the snippets that are picked by the Retriever, to then be ingested by the Reader LLM as supporting elements for its answer.
- The goal is to build semantically relevant snippets: not too small to be sufficient for supporting an answer, and not too large too avoid diluting individual ideas.

Many options exist for text splitting:
- split every `n` words / characters, but this has the risk of cutting in half paragraphs or even sentences
- split after `n` words / character, but only on sentence boundaries
- **recursive split** tries to preserve even more of the document structure, by processing it tree-like way, splitting first on the largest units (chapters) then recursively splitting on smaller units (paragraphs, sentences).

To learn more about chunking, I recommend you read [this great notebook](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/5_Levels_Of_Text_Splitting.ipynb) by Greg Kamradt.

[This space](https://huggingface.co/spaces/m-ric/chunk_visualizer) lets you visualize how different splitting options affect the chunks you get.

> In the following, we use Langchain's `RecursiveCharacterTextSplitter`.

πŸ’‘ _To measure chunk length in our Text Splitter, our length function will not be the count of characters, but the count of tokens in the tokenized text: indeed, for subsequent embedder that processes token, measuring length in tokens is more relevant and empirically performs better._

```{python}
from langchain.docstore.document import Document as LangchainDocument

RAW_KNOWLEDGE_BASE = [
    LangchainDocument(page_content=doc["text"], metadata={"source": doc["source"]})
    for doc in tqdm(ds)
]
```

```{python}
from langchain.text_splitter import RecursiveCharacterTextSplitter
from transformers import AutoTokenizer


def split_documents(
    chunk_size: int,
    knowledge_base: List[LangchainDocument],
    tokenizer_name: str,
) -> List[LangchainDocument]:
    """
    Split documents into chunks of size `chunk_size` characters and return a list of documents.
    """
    text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
        AutoTokenizer.from_pretrained(tokenizer_name),
        chunk_size=chunk_size,
        chunk_overlap=int(chunk_size / 10),
        add_start_index=True,
        strip_whitespace=True,
        separators=["\n\n", "\n", ".", " ", ""],
    )

    docs_processed = []
    for doc in knowledge_base:
        docs_processed += text_splitter.split_documents([doc])

    # Remove duplicates
    unique_texts = {}
    docs_processed_unique = []
    for doc in docs_processed:
        if doc.page_content not in unique_texts:
            unique_texts[doc.page_content] = True
            docs_processed_unique.append(doc)

    return docs_processed_unique
```

### 2.2. Retriever - embeddings πŸ—‚οΈ
The __retriever acts like an internal search engine__: given the user query, it returns the most relevant documents from your knowledge base.

> For the knowledge base, we use Langchain vector databases since __it offers a convenient [FAISS](https://github.com/facebookresearch/faiss) index and allows us to keep document metadata throughout the processing__.

πŸ› οΈ __Options included:__

- Tune the chunking method:
    - Size of the chunks
    - Method: split on different separators, use [semantic chunking](https://python.langchain.com/docs/modules/data_connection/document_transformers/semantic-chunker)...
- Change the embedding model

```{python}
from langchain.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores.utils import DistanceStrategy
import os


def load_embeddings(
    langchain_docs: List[LangchainDocument],
    chunk_size: int,
    embedding_model_name: Optional[str] = "thenlper/gte-small",
) -> FAISS:
    """
    Creates a FAISS index from the given embedding model and documents. Loads the index directly if it already exists.

    Args:
        langchain_docs: list of documents
        chunk_size: size of the chunks to split the documents into
        embedding_model_name: name of the embedding model to use

    Returns:
        FAISS index
    """
    # load embedding_model
    embedding_model = HuggingFaceEmbeddings(
        model_name=embedding_model_name,
        multi_process=True,
        model_kwargs={"device": "cuda"},
        encode_kwargs={"normalize_embeddings": True},  # set True to compute cosine similarity
    )

    # Check if embeddings already exist on disk
    index_name = f"index_chunk:{chunk_size}_embeddings:{embedding_model_name.replace('/', '~')}"
    index_folder_path = f"./data/indexes/{index_name}/"
    if os.path.isdir(index_folder_path):
        return FAISS.load_local(
            index_folder_path,
            embedding_model,
            distance_strategy=DistanceStrategy.COSINE,
        )

    else:
        print("Index not found, generating it...")
        docs_processed = split_documents(
            chunk_size,
            langchain_docs,
            embedding_model_name,
        )
        knowledge_index = FAISS.from_documents(
            docs_processed, embedding_model, distance_strategy=DistanceStrategy.COSINE
        )
        knowledge_index.save_local(index_folder_path)
        return knowledge_index
```

### 2.3. Reader - LLM πŸ’¬

In this part, the __LLM Reader reads the retrieved documents to formulate its answer.__

πŸ› οΈ Here we tried the following options to improve results:
- Switch reranking on/off
- Change the reader model

```{python}
RAG_PROMPT_TEMPLATE = """
<|system|>
Using the information contained in the context,
give a comprehensive answer to the question.
Respond only to the question asked, response should be concise and relevant to the question.
Provide the number of the source document when relevant.
If the answer cannot be deduced from the context, do not give an answer.</s>
<|user|>
Context:
{context}
---
Now here is the question you need to answer.

Question: {question}
</s>
<|assistant|>
"""
```

```{python}
from langchain_community.llms import HuggingFaceHub

repo_id = "HuggingFaceH4/zephyr-7b-beta"
READER_MODEL_NAME = "zephyr-7b-beta"

READER_LLM = HuggingFaceHub(
    repo_id=repo_id,
    task="text-generation",
    model_kwargs={
        "max_new_tokens": 512,
        "top_k": 30,
        "temperature": 0.1,
        "repetition_penalty": 1.03,
    },
)
```

```{python}
from ragatouille import RAGPretrainedModel
from langchain_core.vectorstores import VectorStore
from langchain_core.language_models.llms import LLM


def answer_with_rag(
    question: str,
    llm: LLM,
    knowledge_index: VectorStore,
    reranker: Optional[RAGPretrainedModel] = None,
    num_retrieved_docs: int = 30,
    num_docs_final: int = 7,
) -> Tuple[str, List[LangchainDocument]]:
    """Answer a question using RAG with the given knowledge index."""
    # Gather documents with retriever
    relevant_docs = knowledge_index.similarity_search(query=question, k=num_retrieved_docs)
    relevant_docs = [doc.page_content for doc in relevant_docs]  # keep only the text

    # Optionally rerank results
    if reranker:
        relevant_docs = reranker.rerank(question, relevant_docs, k=num_docs_final)
        relevant_docs = [doc["content"] for doc in relevant_docs]

    relevant_docs = relevant_docs[:num_docs_final]

    # Build the final prompt
    context = "\nExtracted documents:\n"
    context += "".join([f"Document {str(i)}:::\n" + doc for i, doc in enumerate(relevant_docs)])

    final_prompt = RAG_PROMPT_TEMPLATE.format(question=question, context=context)

    # Redact an answer
    answer = llm(final_prompt)

    return answer, relevant_docs
```

# 3. Benchmarking the RAG system

The RAG system and the evaluation datasets are now ready. The last step is to judge the RAG system's output on this evlauation dataset.

To this end, __we setup a judge agent__. βš–οΈπŸ€–

Out of [the different RAG evaluation metrics](https://docs.ragas.io/en/latest/concepts/metrics/index.html), we choose to focus only on faithfulness since it the best end-to-end metric of our system's performance.

> We use GPT4 as a judge for its empirically good performance, but you could try with other models such as [kaist-ai/prometheus-13b-v1.0](https://huggingface.co/kaist-ai/prometheus-13b-v1.0) or [BAAI/JudgeLM-33B-v1.0](https://huggingface.co/BAAI/JudgeLM-33B-v1.0).

πŸ’‘ _In the evaluation prompt, we give a detailed description each metric on the scale 1-5, as is done in [Prometheus's prompt template](https://huggingface.co/kaist-ai/prometheus-13b-v1.0): this helps the model ground its metric precisely. If instead you give the judge LLM a vague scale to work with, the outputs will not be consistent enough between different examples._

πŸ’‘ _Again, prompting the LLM to output rationale before giving its final score gives it more tokens to help it formalize and elaborate a judgement._

```{python}
def run_rag_tests(
    eval_dataset: datasets.Dataset,
    llm: BaseChatModel,
    knowledge_index: VectorStore,
    output_file: str,
    reranker: Optional[RAGPretrainedModel] = None,
    verbose: Optional[bool] = True,
    test_settings: Optional[str] = None,  # To document the test settings used
):
    """Runs RAG tests on the given dataset and saves the results to the given output file."""
    try:  # load previous generations if they exist
        with open(output_file, "r") as f:
            outputs = json.load(f)
    except:
        outputs = []

    for example in tqdm(eval_dataset):
        question = example["question"]
        if question in [output["question"] for output in outputs]:
            continue

        answer, relevant_docs = answer_with_rag(question, llm, knowledge_index, reranker=reranker)
        if verbose:
            print("=======================================================")
            print(f"Question: {question}")
            print(f"Answer: {answer}")
            print(f'True answer: {example["answer"]}')
        result = {
            "question": question,
            "true_answer": example["answer"],
            "source_doc": example["source_doc"],
            "generated_answer": answer,
            "retrieved_docs": [doc for doc in relevant_docs],
        }
        if test_settings:
            result["test_settings"] = test_settings
        outputs.append(result)

        with open(output_file, "w") as f:
            json.dump(outputs, f)
```

```{python}
EVALUATION_PROMPT = """###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: \"Feedback: {{write a feedback for criteria}} [RESULT] {{an integer number between 1 and 5}}\"
4. Please do not generate any other opening, closing, and explanations. Be sure to include [RESULT] in your output.

###The instruction to evaluate:
{instruction}

###Response to evaluate:
{response}

###Reference Answer (Score 5):
{reference_answer}

###Score Rubrics:
[Is the response correct, accurate, and factual based on the reference answer?]
Score 1: The response is completely incorrect, inaccurate, and/or not factual.
Score 2: The response is mostly incorrect, inaccurate, and/or not factual.
Score 3: The response is somewhat correct, accurate, and/or factual.
Score 4: The response is mostly correct, accurate, and factual.
Score 5: The response is completely correct, accurate, and factual.

###Feedback:"""

from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import SystemMessage


evaluation_prompt_template = ChatPromptTemplate.from_messages(
    [
        SystemMessage(content="You are a fair evaluator language model."),
        HumanMessagePromptTemplate.from_template(EVALUATION_PROMPT),
    ]
)
```

```{python}
from langchain.chat_models import ChatOpenAI

eval_chat_model = ChatOpenAI(model="gpt-4-1106-preview", temperature=0)
evaluator_name = "GPT4"


def evaluate_answers(
    answer_path: str,
    eval_chat_model: BaseChatModel,
    evaluator_name: str,
    evaluation_prompt_template: ChatPromptTemplate,
) -> None:
    """Evaluates generated answers. Modifies the given answer file in place for better checkpointing."""
    answers = []
    if os.path.isfile(answer_path):  # load previous generations if they exist
        answers = json.load(open(answer_path, "r"))

    for experiment in tqdm(answers):
        if f"eval_score_{evaluator_name}" in experiment:
            continue

        eval_prompt = evaluation_prompt_template.format_messages(
            instruction=experiment["question"],
            response=experiment["generated_answer"],
            reference_answer=experiment["true_answer"],
        )
        eval_result = eval_chat_model.invoke(eval_prompt)
        feedback, score = [item.strip() for item in eval_result.content.split("[RESULT]")]
        experiment[f"eval_score_{evaluator_name}"] = score
        experiment[f"eval_feedback_{evaluator_name}"] = feedback

        with open(answer_path, "w") as f:
            json.dump(answers, f)
```

πŸš€ Let's run the tests and evaluate answers!πŸ‘‡

```{python}
if not os.path.exists("./output"):
    os.mkdir("./output")

for chunk_size in [200]:  # Add other chunk sizes (in tokens) as needed
    for embeddings in ["thenlper/gte-small"]:  # Add other embeddings as needed
        for rerank in [True, False]:
            settings_name = f"chunk:{chunk_size}_embeddings:{embeddings.replace('/', '~')}_rerank:{rerank}_reader-model:{READER_MODEL_NAME}"
            output_file_name = f"./output/rag_{settings_name}.json"

            print(f"Running evaluation for {settings_name}:")

            print("Loading knowledge base embeddings...")
            knowledge_index = load_embeddings(
                RAW_KNOWLEDGE_BASE,
                chunk_size=chunk_size,
                embedding_model_name=embeddings,
            )

            print("Running RAG...")
            reranker = (
                RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") if rerank else None
            )
            run_rag_tests(
                eval_dataset=eval_dataset,
                llm=READER_LLM,
                knowledge_index=knowledge_index,
                output_file=output_file_name,
                reranker=reranker,
                verbose=False,
                test_settings=settings_name,
            )

            print("Running evaluation...")
            evaluate_answers(
                output_file_name,
                eval_chat_model,
                evaluator_name,
                evaluation_prompt_template,
            )
```

### Inspect results

```{python}
import glob

outputs = []
for file in glob.glob("./output/*.json"):
    output = pd.DataFrame(json.load(open(file, "r")))
    output["settings"] = file
    outputs.append(output)
result = pd.concat(outputs)
```

```{python}
result["eval_score_GPT4"] = result["eval_score_GPT4"].apply(
    lambda x: int(x) if isinstance(x, str) else 1
)
result["eval_score_GPT4"] = (result["eval_score_GPT4"] - 1) / 4
```

```{python}
average_scores = result.groupby("settings")["eval_score_GPT4"].mean()
average_scores.sort_values()
```

## Example results

Let us load the results that I obtained by tweaking the different options available in this notebook.
For more detail on why these options could work on not, see the notebook on [advanced_RAG](advanced_rag).

As you can see in the graph below, some tweaks do not bring any improvement, some give huge performance boosts.

➑️ ___There is no single good recipe: you should try several different directions when tuning your RAG systems.___

```{python}
import plotly.express as px

scores = datasets.load_dataset("m-ric/rag_scores_cookbook", split="train")
scores = pd.Series(scores["score"], index=scores["settings"])
```

```{python}
fig = px.bar(
    scores,
    color=scores,
    labels={
        "value": "Accuracy",
        "settings": "Configuration",
    },
    color_continuous_scale="bluered",
)
fig.update_layout(w
    width=1000,
    height=600,
    barmode="group",
    yaxis_range=[0, 100],
    title="<b>Accuracy of different RAG configurations</b>",
    xaxis_title="RAG settings",
    font=dict(size=15),
)
fig.layout.yaxis.ticksuffix = "%"
fig.update_coloraxes(showscale=False)
fig.update_traces(texttemplate="%{y:.1f}", textposition="outside")
fig.show()
```

<img src="https://huggingface.co/datasets/huggingface/cookbook-images/resolve/main/RAG_settings_accuracy.png" height="500" width="800">

As you can see, these had varying impact on performance. In particular, tuning the chunk size is both easy and very impactful.

But this is our case: your results could be very different: now that you have a robust evaluation pipeline, you can set on to explore other options! πŸ—ΊοΈ