Spaces:
Sleeping
Sleeping
import re | |
import time | |
import streamlit as st | |
from transformers import pipeline, Conversation, AutoTokenizer | |
from langdetect import detect | |
# choose your model here by setting model_chosen_id equal to 1 or 2 | |
model_chosen_id = 2 | |
model_name_options = { | |
1: "meta-llama/Llama-2-13b-chat-hf", | |
2: "BramVanroy/Llama-2-13b-chat-dutch" | |
} | |
model_chosen = model_name_options[model_chosen_id] | |
my_config = {'model_name': model_chosen, 'do_sample': True, 'temperature': 0.1, 'repetition_penalty': 1.1, 'max_new_tokens': 500, } | |
print(f"Selected model: {my_config['model_name']}") | |
print(f"Parameters are: {my_config}") | |
def count_words(text): | |
# Use a simple regular expression to count words | |
words = re.findall(r'\b\w+\b', text) | |
return len(words) | |
def generate_with_llama_chat(my_config): | |
# get the parameters from the config dict | |
do_sample = my_config.get('do_sample', True) | |
temperature = my_config.get('temperature', 0.1) | |
repetition_penalty = my_config.get('repetition_penalty', 1.1) | |
max_new_tokens = my_config.get('max_new_tokens', 500) | |
start_time = time.time() | |
model = my_config['model_name'] | |
tokenizer = AutoTokenizer.from_pretrained(model) | |
chatbot = pipeline("conversational",model=model, | |
tokenizer=tokenizer, | |
do_sample=do_sample, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
#max_length=2000, | |
max_new_tokens=max_new_tokens, | |
model_kwargs={"device_map": "auto","load_in_8bit": True}) #, "src_lang": "en", "tgt_lang": "nl"}) does not work! | |
end_time = time.time() | |
elapsed_time = end_time - start_time | |
print(f"Loading the model: {elapsed_time} seconds") | |
return chatbot | |
def get_answer(chatbot, input_text): | |
start_time = time.time() | |
print(f"Processing the input\n {input_text}\n") | |
print('Processing the answer....') | |
conversation = Conversation(input_text) | |
print(f"Conversation(input_text): {conversation}") | |
output = (chatbot(conversation))[1]['content'] | |
#Add the last print statement to the output variable | |
output += f"\nAnswered in {elapsed_time:.1f} seconds, Nr generated words: {count_words(output)}" | |
return output | |
chatbot = generate_with_llama_chat(my_config) | |
text = st.text_area("Enter text to summarize here.") | |
if text: | |
out = get_answer(chatbot, text) | |
st.json(out) |