Spaces:
Running
Running
File size: 40,801 Bytes
1c9b44f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
from datetime import datetime, timedelta
import json
from pymongo import MongoClient
from dotenv import load_dotenv
import os
import bcrypt
from openai import OpenAI
from streamlit_plotly_events import plotly_events
from pinecone import Pinecone, ServerlessSpec
import threading # {{ edit_25: Import threading for background processing }}
import tiktoken
from tiktoken.core import Encoding
# Set page configuration to wide mode
st.set_page_config(layout="wide")
# Load environment variables
load_dotenv()
# MongoDB connection
mongodb_uri = os.getenv('MONGODB_URI')
mongo_client = MongoClient(mongodb_uri) # {{ edit_11: Rename MongoDB client to 'mongo_client' }}
db = mongo_client['llm_evaluation_system']
users_collection = db['users']
results_collection = db['evaluation_results']
# Initialize OpenAI client
openai_client = OpenAI() # {{ edit_12: Rename OpenAI client to 'openai_client' }}
# Initialize Pinecone
pinecone_client = Pinecone(api_key=os.getenv('PINECONE_API_KEY')) # {{ edit_13: Initialize Pinecone client using Pinecone class }}
# Initialize the tokenizer
tokenizer: Encoding = tiktoken.get_encoding("cl100k_base") # This is suitable for GPT-4 and recent models
# Authentication functions
def hash_password(password):
return bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt())
def verify_password(password, hashed_password):
return bcrypt.checkpw(password.encode('utf-8'), hashed_password)
def authenticate(username, password):
user = users_collection.find_one({"username": username})
if user and verify_password(password, user['password']):
return True
return False
def signup(username, password):
if users_collection.find_one({"username": username}):
return False
hashed_password = hash_password(password)
# {{ edit_1: Initialize models list for the new user }}
users_collection.insert_one({
"username": username,
"password": hashed_password,
"models": [] # List to store user's models
})
return True
def upload_model(file):
return "Model uploaded successfully!"
# Function to perform evaluation (placeholder)
def evaluate_model(model_identifier, metrics, username):
# {{ edit_4: Differentiate between Custom and Named models }}
user = users_collection.find_one({"username": username})
models = user.get("models", [])
selected_model = next((m for m in models if (m['model_name'] == model_identifier) or (m['model_id'] == model_identifier)), None)
if selected_model:
if selected_model.get("model_type") == "named":
# For Named Models, use RAG-based evaluation
return evaluate_named_model(model_identifier, prompt, context_dataset)
else:
# For Custom Models, proceed with existing evaluation logic
results = {metric: round(np.random.rand() * 100, 2) for metric in metrics}
return results
else:
st.error("Selected model not found.")
return None
# Function to generate response using GPT-4-mini
def generate_response(prompt, context):
try:
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"Context: {context}\n\nPrompt: {prompt}"}
]
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error generating response: {str(e)}")
return None
# Function to clear the results database
def clear_results_database():
try:
results_collection.delete_many({})
return True
except Exception as e:
st.error(f"Error clearing results database: {str(e)}")
return False
# Function to generate embeddings using the specified model
def generate_embedding(text):
try:
embedding_response = openai_client.embeddings.create(
model="text-embedding-3-large", # {{ edit_3: Use the specified embedding model }}
input=text,
encoding_format="float"
)
embedding = embedding_response["data"][0]["embedding"]
return embedding
except Exception as e:
st.error(f"Error generating embedding: {str(e)}")
return None
# Function to handle Named Model Evaluation using RAG
def evaluate_named_model(model_name, prompt, context_dataset):
# {{ edit_4: Implement evaluation using RAG and Pinecone with the specified embedding model }}
try:
# Initialize Pinecone index
index = pinecone_client.Index(os.getenv('PINECONE_INDEX_NAME'))
# Generate embedding for the prompt
prompt_embedding = generate_embedding(prompt)
if not prompt_embedding:
st.error("Failed to generate embedding for the prompt.")
return None
# Retrieve relevant context using RAG by querying Pinecone with the embedding
query_response = index.query(
top_k=5,
namespace=model_name,
include_metadata=True,
vector=prompt_embedding # {{ edit_5: Use embedding vector for querying }}
)
# Aggregate retrieved context
retrieved_context = " ".join([item['metadata']['text'] for item in query_response['matches']])
# Generate response using the retrieved context
response = generate_response(prompt, retrieved_context)
# Evaluate the response
evaluation = teacher_evaluate(prompt, retrieved_context, response)
# Save the results
save_results(model_name, prompt, retrieved_context, response, evaluation)
return evaluation
except Exception as e:
st.error(f"Error in evaluating named model: {str(e)}")
return None
# Example: When indexing data to Pinecone, generate embeddings using the specified model
def index_context_data(model_name, texts):
try:
index = pinecone_client.Index(os.getenv('PINECONE_INDEX_NAME'))
for text in texts:
embedding = generate_embedding(text)
if embedding:
index.upsert([
{
"id": f"{model_name}_{hash(text)}",
"values": embedding,
"metadata": {"text": text}
}
])
except Exception as e:
st.error(f"Error indexing data to Pinecone: {str(e)}")
def upload_model(file, username, model_type):
# {{ edit_5: Modify upload_model to handle model_type }}
model_id = f"{username}_model_{int(datetime.now().timestamp())}"
if model_type == "custom":
# Save the model file as needed
model_path = os.path.join("models", f"{model_id}.bin")
with open(model_path, "wb") as f:
f.write(file.getbuffer())
# Update user's models list
users_collection.update_one(
{"username": username},
{"$push": {"models": {
"model_id": model_id,
"file_path": model_path,
"uploaded_at": datetime.now(),
"model_type": "custom"
}}}
)
return f"Custom Model {model_id} uploaded successfully!"
elif model_type == "named":
# For Named Models, assume the model is managed externally (e.g., via Pinecone)
users_collection.update_one(
{"username": username},
{"$push": {"models": {
"model_id": model_id,
"model_name": None,
"file_path": None,
"model_link": None,
"uploaded_at": datetime.now(),
"model_type": "named"
}}}
)
return f"Named Model {model_id} registered successfully!"
else:
return "Invalid model type specified."
# Function to save results to MongoDB
def save_results(username, model, prompt, context, response, evaluation): # {{ edit_29: Add 'username' parameter }}
result = {
"username": username, # Use the passed 'username' parameter
"model_id": model['model_id'], # {{ edit_19: Associate results with 'model_id' }}
"model_name": model.get('model_name'),
"model_type": model.get('model_type', 'custom'), # {{ edit_20: Include 'model_type' in results }}
"prompt": prompt,
"context": context,
"response": response,
"evaluation": evaluation,
"timestamp": datetime.now()
}
results_collection.insert_one(result)
# Function for teacher model evaluation
def teacher_evaluate(prompt, context, response):
try:
evaluation_prompt = f"""
Evaluate the following response based on the given prompt and context.
Rate each factor on a scale of 0 to 1, where 1 is the best (or least problematic for negative factors like Hallucination and Bias).
Please provide scores with two decimal places, and avoid extreme scores of exactly 0 or 1 unless absolutely necessary.
Prompt: {prompt}
Context: {context}
Response: {response}
Factors to evaluate:
1. Accuracy: How factually correct is the response?
2. Hallucination: To what extent does the response contain made-up information? (Higher score means less hallucination)
3. Groundedness: How well is the response grounded in the given context and prompt?
4. Relevance: How relevant is the response to the prompt?
5. Recall: How much of the relevant information from the context is included in the response?
6. Precision: How precise and focused is the response in addressing the prompt?
7. Consistency: How consistent is the response with the given information and within itself?
8. Bias Detection: To what extent is the response free from bias? (Higher score means less bias)
Provide the evaluation as a JSON object. Each factor should be a key mapping to an object containing 'score' and 'explanation'.
Do not include any additional text, explanations, or markdown formatting.
"""
evaluation_response = openai_client.chat.completions.create(
model="gpt-4o-mini", # Corrected model name
messages=[
{"role": "system", "content": "You are an expert evaluator of language model responses."},
{"role": "user", "content": evaluation_prompt}
]
)
content = evaluation_response.choices[0].message.content.strip()
# Ensure the response starts and ends with curly braces
if not (content.startswith("{") and content.endswith("}")):
st.error("Teacher evaluation did not return a valid JSON object.")
st.error(f"Response content: {content}")
return None
try:
evaluation = json.loads(content)
return evaluation
except json.JSONDecodeError as e:
st.error(f"Error decoding evaluation response: {str(e)}")
st.error(f"Response content: {content}")
return None
except Exception as e:
st.error(f"Error in teacher evaluation: {str(e)}")
return None
# Function to generate dummy data for demonstration
def generate_dummy_data():
dates = pd.date_range(end=datetime.now(), periods=30).tolist()
metrics = ['Accuracy', 'Precision', 'Recall', 'F1 Score', 'Consistency', 'Bias']
data = {
'Date': dates * len(metrics),
'Metric': [metric for metric in metrics for _ in range(len(dates))],
'Value': np.random.rand(len(dates) * len(metrics)) * 100
}
return pd.DataFrame(data)
# Function to count tokens
def count_tokens(text: str) -> int:
return len(tokenizer.encode(text))
# Sidebar Navigation
st.sidebar.title("LLM Evaluation System")
# Session state
if 'user' not in st.session_state:
st.session_state.user = None
# Authentication
if not st.session_state.user:
auth_option = st.sidebar.radio("Choose an option", ["Login", "Signup"])
username = st.sidebar.text_input("Username")
password = st.sidebar.text_input("Password", type="password")
if auth_option == "Login":
if st.sidebar.button("Login"):
if authenticate(username, password):
st.session_state.user = username
st.rerun()
else:
st.sidebar.error("Invalid username or password")
else:
if st.sidebar.button("Signup"):
if signup(username, password):
st.sidebar.success("Signup successful. Please login.")
else:
st.sidebar.error("Username already exists")
else:
st.sidebar.success(f"Welcome, {st.session_state.user}!")
if st.sidebar.button("Logout"):
st.session_state.user = None
st.experimental_rerun()
# Add Clear Results Database button
if st.sidebar.button("Clear Results Database"):
if clear_results_database(): # {{ edit_fix: Calling the newly defined clear_results_database function }}
st.sidebar.success("Results database cleared successfully!")
else:
st.sidebar.error("Failed to clear results database.")
# App content
if st.session_state.user:
app_mode = st.sidebar.selectbox("Choose the section", ["Dashboard", "Model Upload", "Evaluation", "Prompt Testing", "Manage Models", "History"]) # {{ edit_add: Added "History" to the sidebar navigation }}
if app_mode == "Dashboard":
st.title("Dashboard")
st.write("### Real-time Metrics and Performance Insights")
# Fetch the user from the database
user = users_collection.find_one({"username": st.session_state.user})
if user is None:
st.error("User not found in the database.")
st.stop()
user_models = user.get("models", [])
if user_models:
model_options = [model['model_name'] if model['model_name'] else model['model_id'] for model in user_models]
selected_model = st.selectbox("Select Model to View Metrics", ["All Models"] + model_options)
else:
st.error("You have no uploaded models.")
selected_model = "All Models"
try:
query = {"username": st.session_state.user}
if selected_model != "All Models":
query["model_name"] = selected_model
if not selected_model:
query = {"username": st.session_state.user, "model_id": selected_model}
results = list(results_collection.find(query))
if results:
df = pd.DataFrame(results)
# Count tokens for prompt, context, and response
df['prompt_tokens'] = df['prompt'].apply(count_tokens)
df['context_tokens'] = df['context'].apply(count_tokens)
df['response_tokens'] = df['response'].apply(count_tokens)
# Calculate total tokens for each row
df['total_tokens'] = df['prompt_tokens'] + df['context_tokens'] + df['response_tokens']
metrics = ["Accuracy", "Hallucination", "Groundedness", "Relevance", "Recall", "Precision", "Consistency", "Bias Detection"]
for metric in metrics:
df[metric] = df['evaluation'].apply(lambda x: x.get(metric, {}).get('score', 0) if x else 0) * 100
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['query_number'] = range(1, len(df) + 1) # Add query numbers
@st.cache_data
def create_metrics_graph(df, metrics):
fig = px.line(
df,
x='query_number', # Use query numbers on x-axis
y=metrics,
title='Metrics Over Queries',
labels={metric: f"{metric} (%)" for metric in metrics},
markers=True,
template='plotly_dark',
)
color_discrete_sequence = px.colors.qualitative.Dark24
for i, metric in enumerate(metrics):
fig.data[i].line.color = color_discrete_sequence[i % len(color_discrete_sequence)]
fig.data[i].marker.color = color_discrete_sequence[i % len(color_discrete_sequence)]
fig.update_layout(
xaxis_title="Query Number",
yaxis_title="Metric Score (%)",
legend_title="Metrics",
hovermode="x unified",
margin=dict(l=50, r=50, t=100, b=50),
height=700 # Increase the height of the graph
)
return fig
fig = create_metrics_graph(df, metrics)
st.plotly_chart(fig, use_container_width=True)
# Latest Metrics
st.subheader("Latest Metrics")
latest_result = df.iloc[-1] # Get the last row (most recent query)
latest_metrics = {metric: latest_result[metric] for metric in metrics}
cols = st.columns(4)
for i, (metric, value) in enumerate(latest_metrics.items()):
with cols[i % 4]:
color = 'green' if value >= 75 else 'orange' if value >= 50 else 'red'
st.metric(label=metric, value=f"{value:.2f}%", delta=None)
st.progress(value / 100)
# Detailed Data View
st.subheader("Detailed Data View")
# Calculate aggregate metrics
total_spans = len(df)
total_tokens = df['total_tokens'].sum()
# Display aggregate metrics
col1, col2 = st.columns(2)
with col1:
st.metric("Total Spans", f"{total_spans:,}")
with col2:
st.metric("Total Tokens", f"{total_tokens:,.2f}M" if total_tokens >= 1e6 else f"{total_tokens:,}")
# Prepare the data for display
display_data = []
for _, row in df.iterrows():
display_row = {
"Prompt": row['prompt'][:50] + "...", # Truncate long prompts
"Context": row['context'][:50] + "...", # Truncate long contexts
"Response": row['response'][:50] + "...", # Truncate long responses
}
# Add metrics to the display row
for metric in metrics:
display_row[metric] = row[metric] # Store as float, not string
display_data.append(display_row)
# Convert to DataFrame for easy display
display_df = pd.DataFrame(display_data)
# Function to color cells based on score
def color_cells(val):
if isinstance(val, float):
if val >= 80:
color = 'green'
elif val >= 60:
color = '#90EE90' # Light green
else:
color = 'red'
return f'background-color: {color}; color: black'
return ''
# Apply the styling only to metric columns
styled_df = display_df.style.applymap(color_cells, subset=metrics)
# Format metric columns as percentages
for metric in metrics:
styled_df = styled_df.format({metric: "{:.2f}%"})
# Display the table with custom styling
st.dataframe(
styled_df.set_properties(**{
'color': 'white',
'border': '1px solid #ddd'
}).set_table_styles([
{'selector': 'th', 'props': [('background-color', '#4CAF50'), ('color', 'white')]},
{'selector': 'td', 'props': [('text-align', 'left')]},
# Keep background white for non-metric columns
{'selector': 'td:nth-child(-n+3)', 'props': [('background-color', 'white !important')]}
]),
use_container_width=True,
height=400 # Set a fixed height with scrolling
)
# Placeholders for future sections
st.subheader("Worst Performing Slice Analysis")
st.info("This section will show analysis of the worst-performing data slices.")
st.subheader("UMAP Visualization")
st.info("This section will contain UMAP visualizations for dimensionality reduction insights.")
else:
st.info("No evaluation results available for the selected model.")
except Exception as e:
st.error(f"Error fetching data from database: {e}")
st.error("Detailed error information:")
st.error(str(e))
import traceback
st.error(traceback.format_exc())
elif app_mode == "Model Upload":
st.title("Upload Your Model")
model_type = st.radio("Select Model Type", ["Custom", "Named"]) # {{ edit_6: Select model type }}
uploaded_file = st.file_uploader("Choose a model file", type=[".pt", ".h5", ".bin"]) if model_type == "custom" else None
if st.button("Upload Model"):
if model_type == "custom" and uploaded_file is not None:
result = upload_model(uploaded_file, st.session_state.user, model_type="custom")
st.success(result)
elif model_type == "named":
result = upload_model(None, st.session_state.user, model_type="named")
st.success(result)
else:
st.error("Please upload a valid model file for Custom models.")
elif app_mode == "Evaluation":
st.title("Evaluate Your Model")
st.write("### Select Model and Evaluation Metrics")
# Fetch the user from the database
user = users_collection.find_one({"username": st.session_state.user})
if user is None:
st.error("User not found in the database.")
st.stop()
user_models = user.get("models", [])
if not user_models:
st.error("You have no uploaded models. Please upload a model first.")
else:
# {{ edit_1: Display model_name instead of model_id }}
model_identifier = st.selectbox(
"Choose a Model to Evaluate",
[model['model_name'] if model['model_name'] else model['model_id'] for model in user_models]
)
# {{ edit_2: Remove metrics selection and set fixed metrics }}
fixed_metrics = ["Accuracy", "Hallucination", "Groundedness", "Relevance", "Recall", "Precision", "Consistency", "Bias Detection"]
st.write("### Evaluation Metrics")
st.write(", ".join(fixed_metrics))
# Modify the evaluation function call to use fixed_metrics
if st.button("Start Evaluation"):
with st.spinner("Evaluation in progress..."):
# {{ edit_3: Use fixed_metrics instead of user-selected metrics }}
results = evaluate_model(model_identifier, fixed_metrics, st.session_state.user)
# Fetch the current model document
current_model = next((m for m in user_models if (m['model_name'] == model_identifier) or (m['model_id'] == model_identifier)), None)
if current_model:
save_results(st.session_state.user, current_model, prompt, context, response, results) # {{ edit_21: Pass current_model to save_results }}
st.success("Evaluation Completed!")
st.json(results)
else:
st.error("Selected model not found.")
elif app_mode == "Prompt Testing":
st.title("Prompt Testing")
# {{ edit_6: Use model_name instead of model_id }}
model_selection_option = st.radio("Select Model Option:", ["Choose Existing Model", "Add New Model"])
if model_selection_option == "Choose Existing Model":
user = users_collection.find_one({"username": st.session_state.user})
user_models = user.get("models", [])
if not user_models:
st.error("You have no uploaded models. Please upload a model first.")
else:
# Display model_name instead of model_id
model_name = st.selectbox("Select a Model for Testing", [model['model_name'] if model['model_name'] else model['model_id'] for model in user_models])
else:
# Option to enter model name or upload a link
new_model_option = st.radio("Add Model By:", ["Enter Model Name", "Upload Model Link"])
if new_model_option == "Enter Model Name":
model_name_input = st.text_input("Enter New Model Name:")
if st.button("Save Model Name"):
if model_name_input:
# {{ edit_3: Save the new model name to user's models }}
model_id = f"{st.session_state.user}_model_{int(datetime.now().timestamp())}"
users_collection.update_one(
{"username": st.session_state.user},
{"$push": {"models": {
"model_id": model_id,
"model_name": model_name_input,
"file_path": None,
"model_link": None,
"uploaded_at": datetime.now()
}}}
)
st.success(f"Model '{model_name_input}' saved successfully as {model_id}!")
model_name = model_name_input # Use model_name instead of model_id
else:
st.error("Please enter a valid model name.")
else:
model_link = st.text_input("Enter Model Link:")
if st.button("Save Model Link"):
if model_link:
# {{ edit_4: Save the model link to user's models }}
model_id = f"{st.session_state.user}_model_{int(datetime.now().timestamp())}"
users_collection.update_one(
{"username": st.session_state.user},
{"$push": {"models": {
"model_id": model_id,
"model_name": None,
"file_path": None,
"model_link": model_link,
"uploaded_at": datetime.now()
}}}
)
st.success(f"Model link saved successfully as {model_id}!")
model_name = model_id # Use model_id if model_name is not available
else:
st.error("Please enter a valid model link.")
# Two ways to provide prompts
prompt_input_method = st.radio("Choose prompt input method:", ["Single JSON", "Batch Upload"])
if prompt_input_method == "Single JSON":
json_input = st.text_area("Enter your JSON input:")
if json_input:
try:
data = json.loads(json_input)
st.success("JSON parsed successfully!")
# Display JSON in a table format
st.subheader("Input Data")
df = pd.json_normalize(data)
st.table(df.style.set_properties(**{
'background-color': '#f0f8ff',
'color': '#333',
'border': '1px solid #ddd'
}).set_table_styles([
{'selector': 'th', 'props': [('background-color', '#4CAF50'), ('color', 'white')]},
{'selector': 'td', 'props': [('text-align', 'left')]}
]))
except json.JSONDecodeError:
st.error("Invalid JSON. Please check your input.")
else:
uploaded_file = st.file_uploader("Upload a JSON file with prompts, contexts, and responses", type="json")
if uploaded_file is not None:
try:
data = json.load(uploaded_file)
st.success("JSON file loaded successfully!")
# Display JSON in a table format
st.subheader("Input Data")
df = pd.json_normalize(data)
st.table(df.style.set_properties(**{
'background-color': '#f0f8ff',
'color': '#333',
'border': '1px solid #ddd'
}).set_table_styles([
{'selector': 'th', 'props': [('background-color', '#4CAF50'), ('color', 'white')]},
{'selector': 'td', 'props': [('text-align', 'left')]}
]))
except json.JSONDecodeError:
st.error("Invalid JSON file. Please check your file contents.")
# Function to handle background evaluation
def run_evaluations(data, selected_model, username): # {{ edit_30: Add 'username' parameter }}
if isinstance(data, list):
for item in data:
if 'response' not in item:
item['response'] = generate_response(item['prompt'], item['context'])
evaluation = teacher_evaluate(item['prompt'], item['context'], item['response'])
save_results(username, selected_model, item['prompt'], item['context'], item['response'], evaluation) # {{ edit_31: Pass 'username' to save_results }}
# Optionally, update completed prompts in session_state or another mechanism
else:
if 'response' not in data:
data['response'] = generate_response(data['prompt'], data['context'])
evaluation = teacher_evaluate(data['prompt'], data['context'], data['response'])
save_results(username, selected_model, data['prompt'], data['context'], data['response'], evaluation) # {{ edit_32: Pass 'username' to save_results }}
# Optionally, update completed prompts in session_state or another mechanism
# In the Prompt Testing section
if st.button("Run Test"):
if not model_name:
st.error("Please select or add a valid Model.")
elif not data:
st.error("Please provide valid JSON input.")
else:
# {{ edit_28: Define 'selected_model' based on 'model_name' }}
selected_model = next(
(m for m in user_models if (m['model_name'] == model_name) or (m['model_id'] == model_name)),
None
)
if selected_model:
with st.spinner("Starting evaluations in the background..."):
evaluation_thread = threading.Thread(
target=run_evaluations,
args=(data, selected_model, st.session_state.user) # {{ edit_33: Pass 'username' to the thread }}
)
evaluation_thread.start()
st.success("Evaluations are running in the background. You can navigate away or close the site.")
# {{ edit_34: Optionally, track running evaluations in session_state }}
else:
st.error("Selected model not found.")
elif app_mode == "Manage Models":
st.title("Manage Your Models")
# Fetch the user from the database
user = users_collection.find_one({"username": st.session_state.user})
if user is None:
st.error("User not found in the database.")
st.stop()
user_models = user.get("models", [])
# {{ edit_1: Add option to add a new model }}
st.subheader("Add a New Model")
add_model_option = st.radio("Add Model By:", ["Enter Model Name", "Upload Model Link"])
if add_model_option == "Enter Model Name":
new_model_name = st.text_input("Enter New Model Name:")
if st.button("Add Model Name"):
if new_model_name:
model_id = f"{st.session_state.user}_model_{int(datetime.now().timestamp())}"
users_collection.update_one(
{"username": st.session_state.user},
{"$push": {"models": {
"model_id": model_id,
"model_name": new_model_name,
"file_path": None,
"model_link": None,
"uploaded_at": datetime.now()
}}}
)
st.success(f"Model '{new_model_name}' added successfully as {model_id}!")
else:
st.error("Please enter a valid model name.")
else:
new_model_link = st.text_input("Enter Model Link:")
if st.button("Add Model Link"):
if new_model_link:
model_id = f"{st.session_state.user}_model_{int(datetime.now().timestamp())}"
users_collection.update_one(
{"username": st.session_state.user},
{"$push": {"models": {
"model_id": model_id,
"model_name": None,
"file_path": None,
"model_link": new_model_link,
"uploaded_at": datetime.now()
}}}
)
st.success(f"Model link added successfully as {model_id}!")
else:
st.error("Please enter a valid model link.")
st.markdown("---")
if user_models:
st.subheader("Your Models")
for model in user_models:
st.markdown(f"**Model ID:** {model['model_id']}")
st.write(f"**Model Type:** {model.get('model_type', 'custom').capitalize()}") # {{ edit_14: Handle missing 'model_type' with default 'custom' }}
if model.get("model_name"):
st.write(f"**Model Name:** {model['model_name']}")
if model.get("model_link"):
st.write(f"**Model Link:** [Link]({model['model_link']})")
if model.get("file_path"):
st.write(f"**File Path:** {model['file_path']}")
st.write(f"**Uploaded at:** {model['uploaded_at']}")
# Add delete option
if st.button(f"Delete {model['model_id']}"):
# Delete the model file if exists and it's a Custom model
if model['file_path'] and os.path.exists(model['file_path']):
os.remove(model['file_path'])
# Remove model from user's models list
users_collection.update_one(
{"username": st.session_state.user},
{"$pull": {"models": {"model_id": model['model_id']}}}
)
st.success(f"Model {model['model_id']} deleted successfully!")
else:
st.info("You have no uploaded models.")
elif app_mode == "History": # {{ edit_add: Enhanced History UI }}
st.title("History")
st.write("### Your Evaluation History")
try:
# Fetch all evaluation results for the current user from MongoDB
user_results = list(results_collection.find({"username": st.session_state.user}).sort("timestamp", -1))
if user_results:
# Convert results to a pandas DataFrame
df = pd.DataFrame(user_results)
# Normalize the evaluation JSON into separate columns
eval_df = df['evaluation'].apply(pd.Series)
for metric in ["Accuracy", "Hallucination", "Groundedness", "Relevance", "Recall", "Precision", "Consistency", "Bias Detection"]:
if metric in eval_df.columns:
df[metric + " Score"] = eval_df[metric].apply(lambda x: x.get('score', 0) * 100 if isinstance(x, dict) else 0)
df[metric + " Explanation"] = eval_df[metric].apply(lambda x: x.get('explanation', '') if isinstance(x, dict) else '')
else:
df[metric + " Score"] = 0
df[metric + " Explanation"] = ""
# Select relevant columns to display
display_df = df[[
"timestamp", "model_name", "prompt", "context", "response",
"Accuracy Score", "Hallucination Score", "Groundedness Score",
"Relevance Score", "Recall Score", "Precision Score",
"Consistency Score", "Bias Detection Score"
]]
# Rename columns for better readability
display_df = display_df.rename(columns={
"timestamp": "Timestamp",
"model_name": "Model Name",
"prompt": "Prompt",
"context": "Context",
"response": "Response",
"Accuracy Score": "Accuracy (%)",
"Hallucination Score": "Hallucination (%)",
"Groundedness Score": "Groundedness (%)",
"Relevance Score": "Relevance (%)",
"Recall Score": "Recall (%)",
"Precision Score": "Precision (%)",
"Consistency Score": "Consistency (%)",
"Bias Detection Score": "Bias Detection (%)"
})
# Convert timestamp to a readable format
display_df['Timestamp'] = pd.to_datetime(display_df['Timestamp']).dt.strftime('%Y-%m-%d %H:%M:%S')
st.subheader("Evaluation Results")
# Display the DataFrame with enhanced styling
st.dataframe(
display_df.style.set_properties(**{
'background-color': '#f0f8ff',
'color': '#333',
'border': '1px solid #ddd'
}).set_table_styles([
{'selector': 'th', 'props': [('background-color', '#f5f5f5'), ('text-align', 'center')]},
{'selector': 'td', 'props': [('text-align', 'center'), ('vertical-align', 'top')]}
]).format({
"Accuracy (%)": "{:.2f}",
"Hallucination (%)": "{:.2f}",
"Groundedness (%)": "{:.2f}",
"Relevance (%)": "{:.2f}",
"Recall (%)": "{:.2f}",
"Precision (%)": "{:.2f}",
"Consistency (%)": "{:.2f}",
"Bias Detection (%)": "{:.2f}"
}), use_container_width=True
)
else:
st.info("You have no evaluation history yet.")
except Exception as e:
st.error(f"Error fetching history data: {e}")
# Add a footer
st.sidebar.markdown("---")
st.sidebar.info("LLM Evaluation System - v0.2")
# Function to handle model upload (placeholder)
|