Spaces:
Sleeping
Sleeping
poemsforaphrodite
commited on
Commit
•
3d7a954
1
Parent(s):
79695fc
Upload 2 files
Browse files- main.py +522 -0
- requirements.txt +10 -0
main.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Standard library imports
|
2 |
+
import datetime
|
3 |
+
import base64
|
4 |
+
|
5 |
+
# Related third-party imports
|
6 |
+
import streamlit as st
|
7 |
+
from streamlit_elements import elements
|
8 |
+
from google_auth_oauthlib.flow import Flow
|
9 |
+
from googleapiclient.discovery import build
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
import pandas as pd
|
12 |
+
import searchconsole
|
13 |
+
import os
|
14 |
+
import cohere
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
import requests
|
17 |
+
from bs4 import BeautifulSoup
|
18 |
+
|
19 |
+
load_dotenv()
|
20 |
+
# Initialize Cohere client
|
21 |
+
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
|
22 |
+
co = cohere.Client(COHERE_API_KEY)
|
23 |
+
|
24 |
+
# Configuration: Set to True if running locally, False if running on Streamlit Cloud
|
25 |
+
IS_LOCAL = False
|
26 |
+
|
27 |
+
# Constants
|
28 |
+
SEARCH_TYPES = ["web", "image", "video", "news", "discover", "googleNews"]
|
29 |
+
DATE_RANGE_OPTIONS = [
|
30 |
+
"Last 7 Days",
|
31 |
+
"Last 30 Days",
|
32 |
+
"Last 3 Months",
|
33 |
+
"Last 6 Months",
|
34 |
+
"Last 12 Months",
|
35 |
+
"Last 16 Months",
|
36 |
+
"Custom Range"
|
37 |
+
]
|
38 |
+
DEVICE_OPTIONS = ["All Devices", "desktop", "mobile", "tablet"]
|
39 |
+
BASE_DIMENSIONS = ["page", "query", "country", "date"]
|
40 |
+
MAX_ROWS = 250_000
|
41 |
+
DF_PREVIEW_ROWS = 100
|
42 |
+
|
43 |
+
# -------------
|
44 |
+
# Streamlit App Configuration
|
45 |
+
# -------------
|
46 |
+
|
47 |
+
def setup_streamlit():
|
48 |
+
"""
|
49 |
+
Configures Streamlit's page settings and displays the app title and markdown information.
|
50 |
+
Sets the page layout, title, and markdown content with links and app description.
|
51 |
+
"""
|
52 |
+
st.set_page_config(page_title="✨ Simple Google Search Console Data | LeeFoot.co.uk", layout="wide")
|
53 |
+
st.title("✨ Simple Google Search Console Data | June 2024")
|
54 |
+
st.markdown(f"### Lightweight GSC Data Extractor. (Max {MAX_ROWS:,} Rows)")
|
55 |
+
|
56 |
+
st.markdown(
|
57 |
+
"""
|
58 |
+
<p>
|
59 |
+
Created by <a href="https://twitter.com/LeeFootSEO" target="_blank">LeeFootSEO</a> |
|
60 |
+
<a href="https://leefoot.co.uk" target="_blank">More Apps & Scripts on my Website</a>
|
61 |
+
""",
|
62 |
+
unsafe_allow_html=True
|
63 |
+
)
|
64 |
+
st.divider()
|
65 |
+
|
66 |
+
def init_session_state():
|
67 |
+
"""
|
68 |
+
Initialises or updates the Streamlit session state variables for property selection,
|
69 |
+
search type, date range, dimensions, and device type.
|
70 |
+
"""
|
71 |
+
if 'selected_property' not in st.session_state:
|
72 |
+
st.session_state.selected_property = None
|
73 |
+
if 'selected_search_type' not in st.session_state:
|
74 |
+
st.session_state.selected_search_type = 'web'
|
75 |
+
if 'selected_date_range' not in st.session_state:
|
76 |
+
st.session_state.selected_date_range = 'Last 7 Days'
|
77 |
+
if 'start_date' not in st.session_state:
|
78 |
+
st.session_state.start_date = datetime.date.today() - datetime.timedelta(days=7)
|
79 |
+
if 'end_date' not in st.session_state:
|
80 |
+
st.session_state.end_date = datetime.date.today()
|
81 |
+
if 'selected_dimensions' not in st.session_state:
|
82 |
+
st.session_state.selected_dimensions = ['page', 'query']
|
83 |
+
if 'selected_device' not in st.session_state:
|
84 |
+
st.session_state.selected_device = 'All Devices'
|
85 |
+
if 'custom_start_date' not in st.session_state:
|
86 |
+
st.session_state.custom_start_date = datetime.date.today() - datetime.timedelta(days=7)
|
87 |
+
if 'custom_end_date' not in st.session_state:
|
88 |
+
st.session_state.custom_end_date = datetime.date.today()
|
89 |
+
|
90 |
+
|
91 |
+
def fetch_content(url):
|
92 |
+
"""
|
93 |
+
Fetches the content of a webpage.
|
94 |
+
"""
|
95 |
+
try:
|
96 |
+
response = requests.get(url)
|
97 |
+
response.raise_for_status()
|
98 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
99 |
+
content = soup.get_text(separator=' ', strip=True)
|
100 |
+
return content
|
101 |
+
except requests.RequestException as e:
|
102 |
+
return str(e)
|
103 |
+
|
104 |
+
def generate_embeddings(text_list):
|
105 |
+
"""
|
106 |
+
Generates embeddings for a list of texts using Cohere's API.
|
107 |
+
"""
|
108 |
+
if not text_list:
|
109 |
+
return []
|
110 |
+
|
111 |
+
model = 'embed-english-v3.0'
|
112 |
+
input_type = 'search_document'
|
113 |
+
response = co.embed(model=model, texts=text_list, input_type=input_type)
|
114 |
+
embeddings = response.embeddings
|
115 |
+
return embeddings
|
116 |
+
|
117 |
+
|
118 |
+
def calculate_relevancy_scores(df):
|
119 |
+
"""
|
120 |
+
Calculates relevancy scores for each row in the dataframe.
|
121 |
+
"""
|
122 |
+
try:
|
123 |
+
st.write("Calculating relevancy scores...")
|
124 |
+
st.write(f"Input DataFrame shape: {df.shape}")
|
125 |
+
st.write(f"Input DataFrame columns: {df.columns}")
|
126 |
+
|
127 |
+
page_contents = [fetch_content(url) for url in df['page']]
|
128 |
+
st.write(f"Fetched {len(page_contents)} page contents")
|
129 |
+
|
130 |
+
page_embeddings = generate_embeddings(page_contents)
|
131 |
+
st.write(f"Generated {len(page_embeddings)} page embeddings")
|
132 |
+
|
133 |
+
query_embeddings = generate_embeddings(df['query'].tolist())
|
134 |
+
st.write(f"Generated {len(query_embeddings)} query embeddings")
|
135 |
+
|
136 |
+
relevancy_scores = cosine_similarity(query_embeddings, page_embeddings).diagonal()
|
137 |
+
st.write(f"Calculated {len(relevancy_scores)} relevancy scores")
|
138 |
+
st.write(f"Sample relevancy scores: {relevancy_scores[:5]}")
|
139 |
+
|
140 |
+
df = df.assign(relevancy_score=relevancy_scores)
|
141 |
+
st.write(f"Assigned relevancy scores to DataFrame")
|
142 |
+
st.write(f"DataFrame shape after assigning scores: {df.shape}")
|
143 |
+
st.write(f"DataFrame columns after assigning scores: {df.columns}")
|
144 |
+
st.write(f"Sample relevancy scores from DataFrame: {df['relevancy_score'].head()}")
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
st.warning(f"Error calculating relevancy scores: {e}")
|
148 |
+
df = df.assign(relevancy_score=0) # Default value if calculation fails
|
149 |
+
|
150 |
+
return df
|
151 |
+
def fetch_data_loading(webproperty, search_type, start_date, end_date, dimensions, device_type=None):
|
152 |
+
"""
|
153 |
+
Fetches Google Search Console data with a loading indicator and calculates relevancy scores.
|
154 |
+
"""
|
155 |
+
with st.spinner('Fetching data and calculating relevancy scores...'):
|
156 |
+
df = fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type)
|
157 |
+
if not df.empty:
|
158 |
+
df = calculate_relevancy_scores(df)
|
159 |
+
st.write(f"Data fetched. Shape: {df.shape}")
|
160 |
+
return df
|
161 |
+
# -------------
|
162 |
+
|
163 |
+
# Google Authentication Functions
|
164 |
+
# -------------
|
165 |
+
|
166 |
+
def load_config():
|
167 |
+
"""
|
168 |
+
Loads the Google API client configuration from Streamlit secrets.
|
169 |
+
Returns a dictionary with the client configuration for OAuth.
|
170 |
+
"""
|
171 |
+
client_config = {
|
172 |
+
"installed": {
|
173 |
+
"client_id": os.environ["CLIENT_ID"],
|
174 |
+
"client_secret": os.environ["CLIENT_SECRET"],
|
175 |
+
"redirect_uris": [os.environ["REDIRECT_URI"]],
|
176 |
+
}}
|
177 |
+
return client_config
|
178 |
+
|
179 |
+
def init_oauth_flow(client_config):
|
180 |
+
"""
|
181 |
+
Initialises the OAuth flow for Google API authentication using the client configuration.
|
182 |
+
Sets the necessary scopes and returns the configured Flow object.
|
183 |
+
"""
|
184 |
+
scopes = ["https://www.googleapis.com/auth/webmasters"]
|
185 |
+
return Flow.from_client_config(
|
186 |
+
client_config,
|
187 |
+
scopes=scopes,
|
188 |
+
redirect_uri=client_config["installed"]["redirect_uris"][0],
|
189 |
+
)
|
190 |
+
|
191 |
+
def google_auth(client_config):
|
192 |
+
"""
|
193 |
+
Starts the Google authentication process using OAuth.
|
194 |
+
Generates and returns the OAuth flow and the authentication URL.
|
195 |
+
"""
|
196 |
+
flow = init_oauth_flow(client_config)
|
197 |
+
auth_url, _ = flow.authorization_url(prompt="consent")
|
198 |
+
return flow, auth_url
|
199 |
+
|
200 |
+
def auth_search_console(client_config, credentials):
|
201 |
+
"""
|
202 |
+
Authenticates the user with the Google Search Console API using provided credentials.
|
203 |
+
Returns an authenticated searchconsole client.
|
204 |
+
"""
|
205 |
+
token = {
|
206 |
+
"token": credentials.token,
|
207 |
+
"refresh_token": credentials.refresh_token,
|
208 |
+
"token_uri": credentials.token_uri,
|
209 |
+
"client_id": credentials.client_id,
|
210 |
+
"client_secret": credentials.client_secret,
|
211 |
+
"scopes": credentials.scopes,
|
212 |
+
"id_token": getattr(credentials, "id_token", None),
|
213 |
+
}
|
214 |
+
return searchconsole.authenticate(client_config=client_config, credentials=token)
|
215 |
+
|
216 |
+
# -------------
|
217 |
+
# Data Fetching Functions
|
218 |
+
# -------------
|
219 |
+
|
220 |
+
def list_gsc_properties(credentials):
|
221 |
+
"""
|
222 |
+
Lists all Google Search Console properties accessible with the given credentials.
|
223 |
+
Returns a list of property URLs or a message if no properties are found.
|
224 |
+
"""
|
225 |
+
service = build('webmasters', 'v3', credentials=credentials)
|
226 |
+
site_list = service.sites().list().execute()
|
227 |
+
return [site['siteUrl'] for site in site_list.get('siteEntry', [])] or ["No properties found"]
|
228 |
+
|
229 |
+
def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type=None):
|
230 |
+
"""
|
231 |
+
Fetches Google Search Console data for a specified property, date range, dimensions, and device type.
|
232 |
+
Handles errors and returns the data as a DataFrame.
|
233 |
+
"""
|
234 |
+
query = webproperty.query.range(start_date, end_date).search_type(search_type).dimension(*dimensions)
|
235 |
+
|
236 |
+
if 'device' in dimensions and device_type and device_type != 'All Devices':
|
237 |
+
query = query.filter('device', 'equals', device_type.lower())
|
238 |
+
|
239 |
+
try:
|
240 |
+
df = query.limit(MAX_ROWS).get().to_dataframe()
|
241 |
+
return process_gsc_data(df)
|
242 |
+
except Exception as e:
|
243 |
+
show_error(e)
|
244 |
+
return pd.DataFrame()
|
245 |
+
|
246 |
+
def process_gsc_data(df):
|
247 |
+
"""
|
248 |
+
Processes the GSC data to return only unique pages with their first query and relevancy score.
|
249 |
+
"""
|
250 |
+
st.write("Processing GSC data...")
|
251 |
+
st.write(f"Input DataFrame shape: {df.shape}")
|
252 |
+
st.write(f"Input DataFrame columns: {df.columns}")
|
253 |
+
|
254 |
+
# Sort the dataframe by page and clicks (descending) to get the most relevant query first
|
255 |
+
df_sorted = df.sort_values(['page', 'clicks'], ascending=[True, False])
|
256 |
+
|
257 |
+
# Get the first occurrence of each page (which will be the one with the highest clicks)
|
258 |
+
df_unique = df_sorted.drop_duplicates(subset='page', keep='first').copy()
|
259 |
+
|
260 |
+
st.write(f"Unique pages DataFrame shape: {df_unique.shape}")
|
261 |
+
st.write(f"Unique pages DataFrame columns: {df_unique.columns}")
|
262 |
+
|
263 |
+
# Ensure 'relevancy_score' column exists and is preserved
|
264 |
+
if 'relevancy_score' not in df_unique.columns:
|
265 |
+
st.write("Relevancy score column not found, adding default values")
|
266 |
+
df_unique['relevancy_score'] = 0 # Default value if column doesn't exist
|
267 |
+
else:
|
268 |
+
st.write("Preserving relevancy scores")
|
269 |
+
# Make sure to keep the original relevancy scores
|
270 |
+
df_unique['relevancy_score'] = df_sorted.groupby('page')['relevancy_score'].first().values
|
271 |
+
|
272 |
+
# Select only the relevant columns, including the relevancy_score
|
273 |
+
result = df_unique[['page', 'query', 'clicks', 'impressions', 'ctr', 'position', 'relevancy_score']]
|
274 |
+
|
275 |
+
st.write(f"Processed data. Shape: {result.shape}")
|
276 |
+
st.write(f"Columns: {result.columns}")
|
277 |
+
st.write(f"Sample relevancy scores: {result['relevancy_score'].head()}")
|
278 |
+
|
279 |
+
return result
|
280 |
+
|
281 |
+
|
282 |
+
def fetch_data_loading(webproperty, search_type, start_date, end_date, dimensions, device_type=None):
|
283 |
+
"""
|
284 |
+
Fetches Google Search Console data with a loading indicator and calculates relevancy scores.
|
285 |
+
"""
|
286 |
+
with st.spinner('Fetching data and calculating relevancy scores...'):
|
287 |
+
df = fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type)
|
288 |
+
st.write(f"Data fetched. Shape: {df.shape}")
|
289 |
+
st.write(f"Columns: {df.columns}")
|
290 |
+
|
291 |
+
if not df.empty:
|
292 |
+
df = calculate_relevancy_scores(df)
|
293 |
+
st.write("Relevancy scores calculated.")
|
294 |
+
st.write(f"DataFrame shape after calculating scores: {df.shape}")
|
295 |
+
st.write(f"DataFrame columns after calculating scores: {df.columns}")
|
296 |
+
st.write(f"Sample relevancy scores after calculation: {df['relevancy_score'].head()}")
|
297 |
+
|
298 |
+
processed_df = process_gsc_data(df)
|
299 |
+
st.write("Data processed.")
|
300 |
+
st.write(f"Final DataFrame shape: {processed_df.shape}")
|
301 |
+
st.write(f"Final DataFrame columns: {processed_df.columns}")
|
302 |
+
st.write(f"Final sample relevancy scores: {processed_df['relevancy_score'].head()}")
|
303 |
+
|
304 |
+
return processed_df
|
305 |
+
"""
|
306 |
+
Fetches Google Search Console data with a loading indicator. Utilises 'fetch_gsc_data' for data retrieval.
|
307 |
+
Returns the fetched data as a DataFrame.
|
308 |
+
"""
|
309 |
+
with st.spinner('Fetching data...'):
|
310 |
+
return fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type)
|
311 |
+
|
312 |
+
# -------------
|
313 |
+
# Utility Functions
|
314 |
+
# -------------
|
315 |
+
|
316 |
+
def update_dimensions(selected_search_type):
|
317 |
+
"""
|
318 |
+
Updates and returns the list of dimensions based on the selected search type.
|
319 |
+
Adds 'device' to dimensions if the search type requires it.
|
320 |
+
"""
|
321 |
+
return BASE_DIMENSIONS + ['device'] if selected_search_type in SEARCH_TYPES else BASE_DIMENSIONS
|
322 |
+
|
323 |
+
def calc_date_range(selection, custom_start=None, custom_end=None):
|
324 |
+
"""
|
325 |
+
Calculates the date range based on the selected range option.
|
326 |
+
Returns the start and end dates for the specified range.
|
327 |
+
"""
|
328 |
+
range_map = {
|
329 |
+
'Last 7 Days': 7,
|
330 |
+
'Last 30 Days': 30,
|
331 |
+
'Last 3 Months': 90,
|
332 |
+
'Last 6 Months': 180,
|
333 |
+
'Last 12 Months': 365,
|
334 |
+
'Last 16 Months': 480
|
335 |
+
}
|
336 |
+
today = datetime.date.today()
|
337 |
+
if selection == 'Custom Range':
|
338 |
+
if custom_start and custom_end:
|
339 |
+
return custom_start, custom_end
|
340 |
+
else:
|
341 |
+
return today - datetime.timedelta(days=7), today
|
342 |
+
return today - datetime.timedelta(days=range_map.get(selection, 0)), today
|
343 |
+
|
344 |
+
def show_error(e):
|
345 |
+
"""
|
346 |
+
Displays an error message in the Streamlit app.
|
347 |
+
Formats and shows the provided error 'e'.
|
348 |
+
"""
|
349 |
+
st.error(f"An error occurred: {e}")
|
350 |
+
|
351 |
+
def property_change():
|
352 |
+
"""
|
353 |
+
Updates the 'selected_property' in the Streamlit session state.
|
354 |
+
Triggered on change of the property selection.
|
355 |
+
"""
|
356 |
+
st.session_state.selected_property = st.session_state['selected_property_selector']
|
357 |
+
|
358 |
+
# -------------
|
359 |
+
# File & Download Operations
|
360 |
+
# -------------
|
361 |
+
|
362 |
+
def show_dataframe(report):
|
363 |
+
"""
|
364 |
+
Shows a preview of the first 100 rows of the processed report DataFrame in an expandable section.
|
365 |
+
"""
|
366 |
+
with st.expander("Preview the First 100 Rows (Unique Pages with Top Query)"):
|
367 |
+
st.dataframe(report.head(DF_PREVIEW_ROWS))
|
368 |
+
|
369 |
+
def download_csv_link(report):
|
370 |
+
"""
|
371 |
+
Generates and displays a download link for the report DataFrame in CSV format.
|
372 |
+
"""
|
373 |
+
def to_csv(df):
|
374 |
+
return df.to_csv(index=False, encoding='utf-8-sig')
|
375 |
+
|
376 |
+
csv = to_csv(report)
|
377 |
+
b64_csv = base64.b64encode(csv.encode()).decode()
|
378 |
+
href = f'<a href="data:file/csv;base64,{b64_csv}" download="search_console_data.csv">Download CSV File</a>'
|
379 |
+
st.markdown(href, unsafe_allow_html=True)
|
380 |
+
|
381 |
+
# -------------
|
382 |
+
# Streamlit UI Components
|
383 |
+
# -------------
|
384 |
+
|
385 |
+
def show_google_sign_in(auth_url):
|
386 |
+
"""
|
387 |
+
Displays the Google sign-in button and authentication URL in the Streamlit sidebar.
|
388 |
+
"""
|
389 |
+
with st.sidebar:
|
390 |
+
if st.button("Sign in with Google"):
|
391 |
+
# Open the authentication URL
|
392 |
+
st.write('Please click the link below to sign in:')
|
393 |
+
st.markdown(f'[Google Sign-In]({auth_url})', unsafe_allow_html=True)
|
394 |
+
|
395 |
+
def show_property_selector(properties, account):
|
396 |
+
"""
|
397 |
+
Displays a dropdown selector for Google Search Console properties.
|
398 |
+
Returns the selected property's webproperty object.
|
399 |
+
"""
|
400 |
+
selected_property = st.selectbox(
|
401 |
+
"Select a Search Console Property:",
|
402 |
+
properties,
|
403 |
+
index=properties.index(
|
404 |
+
st.session_state.selected_property) if st.session_state.selected_property in properties else 0,
|
405 |
+
key='selected_property_selector',
|
406 |
+
on_change=property_change
|
407 |
+
)
|
408 |
+
return account[selected_property]
|
409 |
+
|
410 |
+
def show_search_type_selector():
|
411 |
+
"""
|
412 |
+
Displays a dropdown selector for choosing the search type.
|
413 |
+
Returns the selected search type.
|
414 |
+
"""
|
415 |
+
return st.selectbox(
|
416 |
+
"Select Search Type:",
|
417 |
+
SEARCH_TYPES,
|
418 |
+
index=SEARCH_TYPES.index(st.session_state.selected_search_type),
|
419 |
+
key='search_type_selector'
|
420 |
+
)
|
421 |
+
|
422 |
+
def show_date_range_selector():
|
423 |
+
"""
|
424 |
+
Displays a dropdown selector for choosing the date range.
|
425 |
+
Returns the selected date range option.
|
426 |
+
"""
|
427 |
+
return st.selectbox(
|
428 |
+
"Select Date Range:",
|
429 |
+
DATE_RANGE_OPTIONS,
|
430 |
+
index=DATE_RANGE_OPTIONS.index(st.session_state.selected_date_range),
|
431 |
+
key='date_range_selector'
|
432 |
+
)
|
433 |
+
|
434 |
+
def show_custom_date_inputs():
|
435 |
+
"""
|
436 |
+
Displays date input fields for custom date range selection.
|
437 |
+
Updates session state with the selected dates.
|
438 |
+
"""
|
439 |
+
st.session_state.custom_start_date = st.date_input("Start Date", st.session_state.custom_start_date)
|
440 |
+
st.session_state.custom_end_date = st.date_input("End Date", st.session_state.custom_end_date)
|
441 |
+
|
442 |
+
def show_dimensions_selector(search_type):
|
443 |
+
"""
|
444 |
+
Displays a multi-select box for choosing dimensions based on the selected search type.
|
445 |
+
Returns the selected dimensions.
|
446 |
+
"""
|
447 |
+
available_dimensions = update_dimensions(search_type)
|
448 |
+
return st.multiselect(
|
449 |
+
"Select Dimensions:",
|
450 |
+
available_dimensions,
|
451 |
+
default=st.session_state.selected_dimensions,
|
452 |
+
key='dimensions_selector'
|
453 |
+
)
|
454 |
+
|
455 |
+
def show_fetch_data_button(webproperty, search_type, start_date, end_date, selected_dimensions):
|
456 |
+
"""
|
457 |
+
Displays a button to fetch data based on selected parameters.
|
458 |
+
Shows the report DataFrame and download link upon successful data fetching.
|
459 |
+
"""
|
460 |
+
if st.button("Fetch Data"):
|
461 |
+
report = fetch_data_loading(webproperty, search_type, start_date, end_date, selected_dimensions)
|
462 |
+
|
463 |
+
if report is not None and not report.empty:
|
464 |
+
show_dataframe(report)
|
465 |
+
download_csv_link(report)
|
466 |
+
else:
|
467 |
+
st.warning("No data found for the selected criteria.")
|
468 |
+
|
469 |
+
|
470 |
+
|
471 |
+
# -------------
|
472 |
+
# Main Streamlit App Function
|
473 |
+
# -------------
|
474 |
+
|
475 |
+
# Main Streamlit App Function
|
476 |
+
def main():
|
477 |
+
"""
|
478 |
+
The main function for the Streamlit application.
|
479 |
+
Handles the app setup, authentication, UI components, and data fetching logic.
|
480 |
+
"""
|
481 |
+
setup_streamlit()
|
482 |
+
client_config = load_config()
|
483 |
+
st.session_state.auth_flow, st.session_state.auth_url = google_auth(client_config)
|
484 |
+
|
485 |
+
query_params = st.experimental_get_query_params()
|
486 |
+
auth_code = query_params.get("code", [None])[0]
|
487 |
+
|
488 |
+
if auth_code and not st.session_state.get('credentials'):
|
489 |
+
st.session_state.auth_flow.fetch_token(code=auth_code)
|
490 |
+
st.session_state.credentials = st.session_state.auth_flow.credentials
|
491 |
+
|
492 |
+
if not st.session_state.get('credentials'):
|
493 |
+
show_google_sign_in(st.session_state.auth_url)
|
494 |
+
else:
|
495 |
+
init_session_state()
|
496 |
+
account = auth_search_console(client_config, st.session_state.credentials)
|
497 |
+
properties = list_gsc_properties(st.session_state.credentials)
|
498 |
+
|
499 |
+
if properties:
|
500 |
+
webproperty = show_property_selector(properties, account)
|
501 |
+
search_type = show_search_type_selector()
|
502 |
+
date_range_selection = show_date_range_selector()
|
503 |
+
|
504 |
+
if date_range_selection == 'Custom Range':
|
505 |
+
show_custom_date_inputs()
|
506 |
+
start_date, end_date = st.session_state.custom_start_date, st.session_state.custom_end_date
|
507 |
+
else:
|
508 |
+
start_date, end_date = calc_date_range(date_range_selection)
|
509 |
+
|
510 |
+
selected_dimensions = show_dimensions_selector(search_type)
|
511 |
+
|
512 |
+
if st.button("Fetch Data and Calculate Relevancy"):
|
513 |
+
report = fetch_data_loading(webproperty, search_type, start_date, end_date, selected_dimensions)
|
514 |
+
|
515 |
+
if report is not None and not report.empty:
|
516 |
+
show_dataframe(report)
|
517 |
+
download_csv_link(report)
|
518 |
+
else:
|
519 |
+
st.warning("No data found for the selected criteria.")
|
520 |
+
|
521 |
+
if __name__ == "__main__":
|
522 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
google-auth-oauthlib
|
3 |
+
google-api-python-client
|
4 |
+
pandas
|
5 |
+
searchconsole
|
6 |
+
python-dotenv
|
7 |
+
cohere
|
8 |
+
scikit-learn
|
9 |
+
beautifulsoup4
|
10 |
+
python-dotenv
|