Spaces:
Running
Running
import numpy as np | |
import matplotlib.pyplot as plt | |
import random | |
import os | |
def random_plot(): | |
start_year = 2020 | |
x = np.arange(start_year, start_year + random.randint(0, 10)) | |
year_count = x.shape[0] | |
plt_format = "-" | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
series = np.arange(0, year_count, dtype=float) | |
series = series**2 | |
series += np.random.rand(year_count) | |
ax.plot(x, series, plt_format) | |
return fig | |
img_dir = os.path.join(os.path.dirname(__file__), "files") | |
file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files") | |
model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files") | |
highlighted_text_output_1 = [ | |
{ | |
"entity": "I-LOC", | |
"score": 0.9988978, | |
"index": 2, | |
"word": "Chicago", | |
"start": 5, | |
"end": 12, | |
}, | |
{ | |
"entity": "I-MISC", | |
"score": 0.9958592, | |
"index": 5, | |
"word": "Pakistani", | |
"start": 22, | |
"end": 31, | |
}, | |
] | |
highlighted_text_output_2 = [ | |
{ | |
"entity": "I-LOC", | |
"score": 0.9988978, | |
"index": 2, | |
"word": "Chicago", | |
"start": 5, | |
"end": 12, | |
}, | |
{ | |
"entity": "I-LOC", | |
"score": 0.9958592, | |
"index": 5, | |
"word": "Pakistan", | |
"start": 22, | |
"end": 30, | |
}, | |
] | |
highlighted_text = "Does Chicago have any Pakistani restaurants" | |
def random_model3d(): | |
model_3d = random.choice( | |
[os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"] | |
) | |
return model_3d | |