File size: 5,123 Bytes
05ed0df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import json
import os

import pandas as pd
from huggingface_hub import Repository
from transformers import AutoConfig

from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values
from src.display_models.get_model_metadata import apply_metadata
from src.display_models.read_results import get_eval_results_dicts, make_clickable_model
from src.display_models.utils import AutoEvalColumn, EvalQueueColumn, has_no_nan_values

IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))


def get_all_requested_models(requested_models_dir: str) -> set[str]:
    depth = 1
    file_names = []

    for root, _, files in os.walk(requested_models_dir):
        current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
        if current_depth == depth:
            file_names.extend([os.path.join(root, file) for file in files])

    return set([file_name.lower().split("eval-queue/")[1] for file_name in file_names])


def load_all_info_from_hub(QUEUE_REPO: str, RESULTS_REPO: str, QUEUE_PATH: str, RESULTS_PATH: str) -> list[Repository]:
    eval_queue_repo = None
    eval_results_repo = None
    requested_models = None

    print("Pulling evaluation requests and results.")

    eval_queue_repo = Repository(
        local_dir=QUEUE_PATH,
        clone_from=QUEUE_REPO,
        repo_type="dataset",
    )
    eval_queue_repo.git_pull()

    eval_results_repo = Repository(
        local_dir=RESULTS_PATH,
        clone_from=RESULTS_REPO,
        repo_type="dataset",
    )
    eval_results_repo.git_pull()

    requested_models = get_all_requested_models("eval-queue")

    return eval_queue_repo, requested_models, eval_results_repo


def get_leaderboard_df(
    eval_results: Repository, eval_results_private: Repository, cols: list, benchmark_cols: list
) -> pd.DataFrame:
    if eval_results:
        print("Pulling evaluation results for the leaderboard.")
        eval_results.git_pull()
    if eval_results_private:
        print("Pulling evaluation results for the leaderboard.")
        eval_results_private.git_pull()

    all_data = get_eval_results_dicts()

    if not IS_PUBLIC:
        all_data.append(gpt4_values)
        all_data.append(gpt35_values)

    all_data.append(baseline)
    apply_metadata(all_data)  # Populate model type based on known hardcoded values in `metadata.py`

    df = pd.DataFrame.from_records(all_data)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df = df[cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return df


def get_evaluation_queue_df(
    eval_queue: Repository, eval_queue_private: Repository, save_path: str, cols: list
) -> list[pd.DataFrame]:
    if eval_queue:
        print("Pulling changes for the evaluation queue.")
        eval_queue.git_pull()
    if eval_queue_private:
        print("Pulling changes for the evaluation queue.")
        eval_queue_private.git_pull()

    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols]


def is_model_on_hub(model_name: str, revision: str) -> bool:
    try:
        AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
        return True, None

    except ValueError:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
        )

    except Exception as e:
        print(f"Could not get the model config from the hub.: {e}")
        return False, "was not found on hub!"