Spaces:
Paused
Paused
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from transformers import StoppingCriteria, StoppingCriteriaList, StopStringCriteria | |
import subprocess | |
import torch._dynamo | |
torch._dynamo.config.suppress_errors = True | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 512 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# Hymba-1.5B-Instruct chat | |
Feel free to chat with our model! More details: [Paper](https://arxiv.org/abs/2411.13676), [Model card](https://huggingface.co/nvidia/Hymba-1.5B-Instruct), [GitHub](https://github.com/NVlabs/hymba). | |
""" | |
model_id = "nvidia/Hymba-1.5B-Instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True) | |
model = model.cuda().to(torch.bfloat16) | |
model.compile() | |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
tokenizer.chat_template = "{{'<extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'\n' + message['content'].strip()}}{% if tools or contexts %}{{'\n'}}{% endif %}{% endif %}{% endfor %}{% if tools %}{% for tool in tools %}{{ '\n<tool> ' + tool|tojson + ' </tool>' }}{% endfor %}{% endif %}{% if contexts %}{% if tools %}{{'\n'}}{% endif %}{% for context in contexts %}{{ '\n<context> ' + context.strip() + ' </context>' }}{% endfor %}{% endif %}{{'\n\n'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '<extra_id_1>User\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ '<extra_id_1>Assistant\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'tool' %}{{ '<extra_id_1>Tool\n' + message['content'].strip() + '\n' }}{% endif %}{% endfor %}{%- if add_generation_prompt %}{{'<extra_id_1>Assistant\n'}}{%- endif %}" | |
#tokenizer.use_default_system_prompt = False | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
conversation += chat_history | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda') | |
stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")]) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=1.0, skip_prompt=True, skip_special_tokens=False) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
use_cache = True, | |
repetition_penalty=repetition_penalty, | |
stopping_criteria = stopping_criteria, | |
attention_mask = torch.ones_like(input_ids), # Add this | |
position_ids = None, | |
kv_last_layer = None, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
# gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. \ | |
# You are a new family of small language models featuring a hybrid-head architecture that strategically integrates attention mechanisms with state space models (SSMs). \ | |
# You are developed by Deep Learning Efficiency Research (DLER) team at NVIDIA Research. \ | |
# The above is just a background context. You can answer any questions not limited to the above background context."), | |
gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. "), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=True, | |
examples=[ | |
["Hello there! How are you doing?"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
cache_examples=False, | |
type="messages", | |
) | |
with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
# gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() |