Spaces:
Sleeping
Sleeping
File size: 3,283 Bytes
632dae3 a5fe81c 632dae3 a5fe81c 1fefb78 a5fe81c 632dae3 a5fe81c 632dae3 a5fe81c 632dae3 a5fe81c 632dae3 d90c525 632dae3 fd8cfef 632dae3 fd8cfef 632dae3 d90c525 0f5d290 632dae3 703bc1b 632dae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import os
import pandas as pd
import numpy as np
import torch
from transformers import DPTFeatureExtractor, DPTForSemanticSegmentation
from PIL import Image
from torch import nn
import requests
import streamlit as st
img_path = None
st.title('Semantic Segmentation using Beit')
file_upload = st.file_uploader('Raw Input Image')
image_path = st.selectbox(
'Choose any one image for inference',
('Select image', 'image1.jpg', 'image2.jpg', 'image3.jpg'))
if file_upload is None:
raw_image = image_path
else:
raw_image = file_upload
if raw_image != 'Select image':
df = pd.read_csv('class_dict_seg.csv')
classes = df['name']
palette = df[[' r', ' g', ' b']].values
id2label = classes.to_dict()
label2id = {v: k for k, v in id2label.items()}
image = Image.open(raw_image)
image = np.asarray(image)
st.success("Load Image: Success")
with st.spinner('Loading Model...'):
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large-ade")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade",ignore_mismatched_sizes=True,num_labels=len(id2label), id2label=id2label, label2id=label2id,reshape_last_stage=True)
model = model.to(device)
model.eval()
st.success("Load model: Success")
with st.spinner('Preparing image...'):
# prepare the image for the model (aligned resize)
feature_extractor_inference = DPTFeatureExtractor(do_random_crop=False, do_pad=False)
pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
with st.spinner('Running inference...'):
outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
with st.spinner('Postprocessing...'):
logits = outputs.logits.cpu()
# First, rescale logits to original image size
upsampled_logits = nn.functional.interpolate(logits,
size=image.shape[:-1], # (height, width)
mode='bilinear',
align_corners=False)
# Second, apply argmax on the class dimension
seg = upsampled_logits.argmax(dim=1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
all_labels = []
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
if label in seg:
all_labels.append(id2label[label])
# Convert to BGR
color_seg = color_seg[..., ::-1]
# Show image + mask
img = np.array(image) * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
st.image(img, caption="Segmented Image")
st.header("Predicted Labels")
for idx, label in enumerate(all_labels):
st.subheader(f'{idx+1}) {label}')
st.success("Success")
#url = "http://images.cocodataset.org/val2017/000000039769.jpg"
#image = Image.open(requests.get(url, stream=True).raw)
#st.success("Image open: Success")
#feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large-ade")
#model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade")
#st.success("Load model: Success")
#inputs = feature_extractor(images=image, return_tensors="pt")
#st.success("Feature extraction: Success")
#outputs = model(**inputs)
#logits = outputs.logits
#st.text(str(logits))
#st.success("Success") |