Spaces:
Running
Running
File size: 5,463 Bytes
1fed0c1 4ffcd95 1fed0c1 4ffcd95 1fed0c1 4ffcd95 1fed0c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import React, { useState, useEffect } from 'react';
import { Card } from '@/components/ui/card';
import { Button } from '@/components/ui/button';
import { Upload, Image as ImageIcon } from 'lucide-react';
const ObjectDetector = () => {
const [status, setStatus] = useState('Loading model...');
const [detections, setDetections] = useState([]);
const [currentImage, setCurrentImage] = useState(null);
const [detector, setDetector] = useState(null);
// Initialize the model
useEffect(() => {
const initModel = async () => {
try {
const { pipeline, env } = await import('https://cdn.jsdelivr.net/npm/@xenova/[email protected]');
env.allowLocalModels = false;
const model = await pipeline('object-detection', 'Xenova/detr-resnet-50');
setDetector(model);
setStatus('Ready');
} catch (error) {
console.error('Error loading model:', error);
setStatus('Error loading model');
}
};
initModel();
}, []);
const handleFileUpload = (event) => {
const file = event.target.files[0];
if (!file) return;
const reader = new FileReader();
reader.onload = (e) => {
setCurrentImage(e.target.result);
detectObjects(e.target.result);
};
reader.readAsDataURL(file);
};
const handleExampleImage = () => {
const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
setCurrentImage(EXAMPLE_URL);
detectObjects(EXAMPLE_URL);
};
const detectObjects = async (img) => {
if (!detector) return;
setStatus('Analyzing...');
try {
const output = await detector(img, {
threshold: 0.5,
percentage: true,
});
setDetections(output.map((det, index) => ({
...det,
id: index + 1
})));
setStatus('');
} catch (error) {
console.error('Error detecting objects:', error);
setStatus('Error analyzing image');
}
};
return (
<Card className="p-6 max-w-4xl mx-auto">
<div className="space-y-6">
<div className="flex gap-4 items-center justify-center">
<Button
onClick={() => document.getElementById('fileUpload').click()}
className="flex items-center gap-2"
>
<Upload className="w-4 h-4" />
Upload Image
</Button>
<Button
onClick={handleExampleImage}
className="flex items-center gap-2"
>
<ImageIcon className="w-4 h-4" />
Try Example
</Button>
<input
id="fileUpload"
type="file"
accept="image/*"
className="hidden"
onChange={handleFileUpload}
/>
</div>
{status && (
<div className="text-center text-sm text-gray-600">
{status}
</div>
)}
{currentImage && (
<div className="relative w-full h-96 bg-gray-100 rounded overflow-hidden">
<img
src={currentImage}
alt="Uploaded"
className="w-full h-full object-contain"
/>
{detections.map((detection) => (
<div
key={detection.id}
className="absolute border-2 border-blue-500"
style={{
left: `${detection.box.xmin}%`,
top: `${detection.box.ymin}%`,
width: `${detection.box.xmax - detection.box.xmin}%`,
height: `${detection.box.ymax - detection.box.ymin}%`,
}}
>
<span className="absolute top-0 left-0 transform -translate-y-full bg-blue-500 text-white px-1 py-0.5 text-xs rounded">
{detection.label} ({(detection.score * 100).toFixed(1)}%)
</span>
</div>
))}
</div>
)}
{detections.length > 0 && (
<div className="overflow-x-auto">
<table className="w-full">
<thead>
<tr className="border-b">
<th className="p-2 text-left font-semibold">Object</th>
<th className="p-2 text-left font-semibold">Confidence</th>
<th className="p-2 text-left font-semibold">Location</th>
</tr>
</thead>
<tbody>
{detections.map((detection) => (
<tr key={detection.id} className="border-b">
<td className="p-2">
<span className="inline-block px-2 py-1 bg-blue-100 text-blue-800 rounded">
{detection.label}
</span>
</td>
<td className="p-2">
{(detection.score * 100).toFixed(1)}%
</td>
<td className="p-2">
<div className="text-sm text-gray-600">
<div>x: {detection.box.xmin.toFixed(1)}% - {detection.box.xmax.toFixed(1)}%</div>
<div>y: {detection.box.ymin.toFixed(1)}% - {detection.box.ymax.toFixed(1)}%</div>
</div>
</td>
</tr>
))}
</tbody>
</table>
</div>
)}
</div>
</Card>
);
};
export default ObjectDetector; |