Spaces:
Build error
Build error
from typing import Dict, List, Any | |
from PIL import Image | |
from io import BytesIO | |
from transformers import AutoModelForSemanticSegmentation, AutoFeatureExtractor | |
import base64 | |
import torch | |
from torch import nn | |
class EndpointHandler(): | |
def __init__(self, path="."): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model = AutoModelForSemanticSegmentation.from_pretrained(path).to(self.device).eval() | |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(path) | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
""" | |
data args: | |
images (:obj:`PIL.Image`) | |
candiates (:obj:`list`) | |
Return: | |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} | |
""" | |
inputs = data.pop("inputs", data) | |
# decode base64 image to PIL | |
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) | |
# preprocess image | |
encoding = self.feature_extractor(images=image, return_tensors="pt") | |
pixel_values = encoding["pixel_values"].to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(pixel_values=pixel_values) | |
logits = outputs.logits | |
upsampled_logits = nn.functional.interpolate(logits, | |
size=image.size[::-1], | |
mode="bilinear", | |
align_corners=False,) | |
pred_seg = upsampled_logits.argmax(dim=1)[0] | |
return pred_seg.tolist() | |