Spaces:
Build error
Build error
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h | |
index de3c706f..0267c1fa 100644 | |
--- a/ggml/include/ggml.h | |
+++ b/ggml/include/ggml.h | |
#define GGML_MAX_OP_PARAMS 64 | |
#ifndef GGML_MAX_NAME | |
-# define GGML_MAX_NAME 64 | |
+# define GGML_MAX_NAME 128 | |
#endif | |
#define GGML_DEFAULT_N_THREADS 4 | |
extern "C" { | |
// manage tensor info | |
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor); | |
+ GGML_API void gguf_set_tensor_ndim(struct gguf_context * ctx, const char * name, int n_dim); | |
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type); | |
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size); | |
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c | |
index b16c462f..6d1568f1 100644 | |
--- a/ggml/src/ggml.c | |
+++ b/ggml/src/ggml.c | |
void gguf_add_tensor( | |
ctx->header.n_tensors++; | |
} | |
+void gguf_set_tensor_ndim(struct gguf_context * ctx, const char * name, const int n_dim) { | |
+ const int idx = gguf_find_tensor(ctx, name); | |
+ if (idx < 0) { | |
+ GGML_ABORT("tensor not found"); | |
+ } | |
+ ctx->infos[idx].n_dims = n_dim; | |
+} | |
+ | |
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { | |
const int idx = gguf_find_tensor(ctx, name); | |
if (idx < 0) { | |
diff --git a/src/llama.cpp b/src/llama.cpp | |
index 24e1f1f0..aeccc173 100644 | |
--- a/src/llama.cpp | |
+++ b/src/llama.cpp | |
enum llm_arch { | |
LLM_ARCH_GRANITE, | |
LLM_ARCH_GRANITE_MOE, | |
LLM_ARCH_CHAMELEON, | |
+ LLM_ARCH_FLUX, | |
+ LLM_ARCH_SD1, | |
+ LLM_ARCH_SDXL, | |
+ LLM_ARCH_SD3, | |
+ LLM_ARCH_AURA, | |
LLM_ARCH_UNKNOWN, | |
}; | |
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { | |
{ LLM_ARCH_GRANITE, "granite" }, | |
{ LLM_ARCH_GRANITE_MOE, "granitemoe" }, | |
{ LLM_ARCH_CHAMELEON, "chameleon" }, | |
+ { LLM_ARCH_FLUX, "flux" }, | |
+ { LLM_ARCH_SD1, "sd1" }, | |
+ { LLM_ARCH_SDXL, "sdxl" }, | |
+ { LLM_ARCH_SD3, "sd3" }, | |
+ { LLM_ARCH_AURA, "aura" }, | |
{ LLM_ARCH_UNKNOWN, "(unknown)" }, | |
}; | |
static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N | |
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, | |
}, | |
}, | |
+ { LLM_ARCH_FLUX, {}}, | |
+ { LLM_ARCH_SD1, {}}, | |
+ { LLM_ARCH_SDXL, {}}, | |
+ { LLM_ARCH_SD3, {}}, | |
+ { LLM_ARCH_AURA, {}}, | |
{ | |
LLM_ARCH_UNKNOWN, | |
{ | |
static void llm_load_hparams( | |
// get general kv | |
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); | |
+ // Disable LLM metadata for image models | |
+ if (model.arch == LLM_ARCH_FLUX || model.arch == LLM_ARCH_SD1 || model.arch == LLM_ARCH_SDXL || model.arch == LLM_ARCH_SD3 || model.arch == LLM_ARCH_AURA) { | |
+ model.ftype = ml.ftype; | |
+ return; | |
+ } | |
+ | |
// get hparams kv | |
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); | |
static void llama_tensor_dequantize_internal( | |
workers.clear(); | |
} | |
+static ggml_type img_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { | |
+ // Special function for quantizing image model tensors | |
+ const std::string name = ggml_get_name(tensor); | |
+ const llm_arch arch = qs.model.arch; | |
+ | |
+ // Sanity check | |
+ if ( | |
+ (name.find("model.diffusion_model.") != std::string::npos) || | |
+ (name.find("first_stage_model.") != std::string::npos) || | |
+ (name.find("single_transformer_blocks.") != std::string::npos) || | |
+ (name.find("joint_transformer_blocks.") != std::string::npos) | |
+ ) { | |
+ throw std::runtime_error("Invalid input GGUF file. This is not a supported UNET model"); | |
+ } | |
+ | |
+ // Unsupported quant types - exclude all IQ quants for now | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_4 || | |
+ ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_8 || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_8_8) { | |
+ throw std::runtime_error("Invalid quantization type for image model (Not supported)"); | |
+ } | |
+ | |
+ if ( // Rules for to_v attention | |
+ (name.find("attn_v.weight") != std::string::npos) || | |
+ (name.find(".to_v.weight") != std::string::npos) || | |
+ (name.find(".attn.w1v.weight") != std::string::npos) || | |
+ (name.find(".attn.w2v.weight") != std::string::npos) | |
+ ){ | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { | |
+ new_type = GGML_TYPE_Q3_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { | |
+ new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ ++qs.i_attention_wv; | |
+ } else if ( // Rules for fused qkv attention | |
+ (name.find("attn_qkv.weight") != std::string::npos) || | |
+ (name.find("attn.qkv.weight") != std::string::npos) | |
+ ) { | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { | |
+ new_type = GGML_TYPE_Q4_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ } else if ( // Rules for ffn | |
+ (name.find("ffn_down") != std::string::npos) | |
+ ) { | |
+ // TODO: add back `layer_info` with some model specific logic + logic further down | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { | |
+ new_type = GGML_TYPE_Q4_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_0) { | |
+ new_type = GGML_TYPE_Q4_1; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_0) { | |
+ new_type = GGML_TYPE_Q5_1; | |
+ } | |
+ ++qs.i_ffn_down; | |
+ } | |
+ | |
+ // Sanity check for row shape | |
+ bool convert_incompatible_tensor = false; | |
+ if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || | |
+ new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { | |
+ int nx = tensor->ne[0]; | |
+ int ny = tensor->ne[1]; | |
+ if (nx % QK_K != 0) { | |
+ LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type)); | |
+ convert_incompatible_tensor = true; | |
+ } else { | |
+ ++qs.n_k_quantized; | |
+ } | |
+ } | |
+ if (convert_incompatible_tensor) { | |
+ // TODO: Possibly reenable this in the future | |
+ // switch (new_type) { | |
+ // case GGML_TYPE_Q2_K: | |
+ // case GGML_TYPE_Q3_K: | |
+ // case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; | |
+ // case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; | |
+ // case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; | |
+ // default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); | |
+ // } | |
+ new_type = GGML_TYPE_F16; | |
+ LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); | |
+ ++qs.n_fallback; | |
+ } | |
+ return new_type; | |
+} | |
+ | |
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { | |
const std::string name = ggml_get_name(tensor); | |
static void llama_model_quantize_internal(const std::string & fname_inp, const s | |
ctx_outs[i_split] = gguf_init_empty(); | |
} | |
gguf_add_tensor(ctx_outs[i_split], tensor); | |
+ // SD3 pos_embed needs special fix as first dim is 1, which gets truncated here | |
+ if (model.arch == LLM_ARCH_SD3) { | |
+ const std::string name = ggml_get_name(tensor); | |
+ if (name == "pos_embed" && tensor->ne[2] == 1) { | |
+ const int n_dim = 3; | |
+ gguf_set_tensor_ndim(ctx_outs[i_split], "pos_embed", n_dim); | |
+ LLAMA_LOG_INFO("\n%s: Correcting pos_embed shape for SD3: [key:%s]\n", __func__, tensor->name); | |
+ } | |
+ } | |
+ // same goes for auraflow | |
+ if (model.arch == LLM_ARCH_AURA) { | |
+ const std::string name = ggml_get_name(tensor); | |
+ if (name == "positional_encoding" && tensor->ne[2] == 1) { | |
+ const int n_dim = 3; | |
+ gguf_set_tensor_ndim(ctx_outs[i_split], "positional_encoding", n_dim); | |
+ LLAMA_LOG_INFO("\n%s: Correcting positional_encoding shape for AuraFlow: [key:%s]\n", __func__, tensor->name); | |
+ } | |
+ if (name == "register_tokens" && tensor->ne[2] == 1) { | |
+ const int n_dim = 3; | |
+ gguf_set_tensor_ndim(ctx_outs[i_split], "register_tokens", n_dim); | |
+ LLAMA_LOG_INFO("\n%s: Correcting register_tokens shape for AuraFlow: [key:%s]\n", __func__, tensor->name); | |
+ } | |
+ } | |
} | |
// Set split info if needed | |
static void llama_model_quantize_internal(const std::string & fname_inp, const s | |
// do not quantize relative position bias (T5) | |
quantize &= name.find("attn_rel_b.weight") == std::string::npos; | |
+ // rules for image models | |
+ bool image_model = false; | |
+ if (model.arch == LLM_ARCH_FLUX) { | |
+ image_model = true; | |
+ quantize &= name.find("txt_in.") == std::string::npos; | |
+ quantize &= name.find("img_in.") == std::string::npos; | |
+ quantize &= name.find("time_in.") == std::string::npos; | |
+ quantize &= name.find("vector_in.") == std::string::npos; | |
+ quantize &= name.find("guidance_in.") == std::string::npos; | |
+ quantize &= name.find("final_layer.") == std::string::npos; | |
+ } | |
+ if (model.arch == LLM_ARCH_SD1 || model.arch == LLM_ARCH_SDXL) { | |
+ image_model = true; | |
+ quantize &= name.find("class_embedding.") == std::string::npos; | |
+ quantize &= name.find("time_embedding.") == std::string::npos; | |
+ quantize &= name.find("add_embedding.") == std::string::npos; | |
+ quantize &= name.find("time_embed.") == std::string::npos; | |
+ quantize &= name.find("label_emb.") == std::string::npos; | |
+ quantize &= name.find("conv_in.") == std::string::npos; | |
+ quantize &= name.find("conv_out.") == std::string::npos; | |
+ quantize &= name != "input_blocks.0.0.weight"; | |
+ quantize &= name != "out.2.weight"; | |
+ } | |
+ if (model.arch == LLM_ARCH_SD3) { | |
+ image_model = true; | |
+ quantize &= name.find("final_layer.") == std::string::npos; | |
+ quantize &= name.find("time_text_embed.") == std::string::npos; | |
+ quantize &= name.find("context_embedder.") == std::string::npos; | |
+ quantize &= name.find("t_embedder.") == std::string::npos; | |
+ quantize &= name.find("y_embedder.") == std::string::npos; | |
+ quantize &= name.find("x_embedder.") == std::string::npos; | |
+ quantize &= name != "proj_out.weight"; | |
+ quantize &= name != "pos_embed"; | |
+ } | |
+ if (model.arch == LLM_ARCH_AURA) { | |
+ image_model = true; | |
+ quantize &= name.find("t_embedder.") == std::string::npos; | |
+ quantize &= name.find("init_x_linear.") == std::string::npos; | |
+ quantize &= name != "modF.1.weight"; | |
+ quantize &= name != "cond_seq_linear.weight"; | |
+ quantize &= name != "final_linear.weight"; | |
+ quantize &= name != "final_linear.weight"; | |
+ quantize &= name != "positional_encoding"; | |
+ quantize &= name != "register_tokens"; | |
+ } | |
+ // ignore 3D/4D tensors for image models as the code was never meant to handle these | |
+ if (image_model) { | |
+ quantize &= ggml_n_dims(tensor) == 2; | |
+ } | |
+ | |
enum ggml_type new_type; | |
void * new_data; | |
size_t new_size; | |
static void llama_model_quantize_internal(const std::string & fname_inp, const s | |
new_type = default_type; | |
// get more optimal quantization type based on the tensor shape, layer, etc. | |
+ if (image_model) { | |
+ new_type = img_tensor_get_type(qs, new_type, tensor, ftype); | |
+ } else { | |
if (!params->pure && ggml_is_quantized(default_type)) { | |
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); | |
} | |
static void llama_model_quantize_internal(const std::string & fname_inp, const s | |
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) { | |
new_type = params->output_tensor_type; | |
} | |
+ } | |
// If we've decided to quantize to the same type the tensor is already | |
// in then there's nothing to do. | |