File size: 1,426 Bytes
3719834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import time
from .imagefunc import log, tensor2pil, image_add_grain, pil2tensor



class AddGrain:

    def __init__(self):
        self.NODE_NAME = 'AddGrain'


    @classmethod
    def INPUT_TYPES(self):

        return {
            "required": {
                "image": ("IMAGE", ),  #
                "grain_power": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": 0.01}),
                "grain_scale": ("FLOAT", {"default": 1, "min": 0.1, "max": 10, "step": 0.1}),
                "grain_sat": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}),
            },
            "optional": {
            }
        }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image",)
    FUNCTION = 'add_grain'
    CATEGORY = '😺dzNodes/LayerFilter'

    def add_grain(self, image, grain_power, grain_scale, grain_sat):

        ret_images = []

        for i in image:
            _canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
            _canvas = image_add_grain(_canvas, grain_scale, grain_power, grain_sat, toe=0, seed=int(time.time()))
            ret_images.append(pil2tensor(_canvas))

        log(f"{self.NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
        return (torch.cat(ret_images, dim=0),)

NODE_CLASS_MAPPINGS = {
    "LayerFilter: AddGrain": AddGrain
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "LayerFilter: AddGrain": "LayerFilter: Add Grain"
}