File size: 8,982 Bytes
40a6f2f
 
 
 
 
 
 
 
 
 
 
2fcabd1
 
40a6f2f
2fcabd1
40a6f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fcabd1
40a6f2f
 
2fcabd1
 
 
80bd1b0
2fcabd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40a6f2f
 
 
 
 
 
 
 
 
2fcabd1
40a6f2f
 
 
 
 
 
 
 
 
2fcabd1
40a6f2f
 
 
 
 
 
 
 
2fcabd1
 
 
 
 
 
 
40a6f2f
2fcabd1
40a6f2f
 
 
 
2fcabd1
40a6f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fcabd1
 
40a6f2f
2fcabd1
40a6f2f
 
 
 
2fcabd1
40a6f2f
2fcabd1
40a6f2f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gradio as gr
import os
import shutil
import fitz
from PIL import Image
import numpy as np
import cv2
import pytesseract
from pytesseract import Output
import zipfile
from pdf2image import convert_from_path
import google.generativeai as genai
import json

# Helper Functions
def convert_to_rgb(image_path):
    img = Image.open(image_path)
    rgb_img = img.convert("RGB")
    return rgb_img

def preprocess_image(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    denoised = cv2.fastNlMeansDenoising(binary, None, 30, 7, 21)
    resized = cv2.resize(denoised, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
    return resized

def extract_vertical_blocks(image):
    image_np = np.array(image)
    data = pytesseract.image_to_data(image_np, lang='fra', output_type=Output.DICT)

    blocks = []
    current_block = ""
    current_block_coords = [float('inf'), float('inf'), 0, 0]
    last_bottom = -1
    line_height = 0

    for i in range(len(data['text'])):
        if int(data['conf'][i]) > 0:
            text = data['text'][i]
            x, y, w, h = data['left'][i], data['top'][i], data['width'][i], data['height'][i]

            if line_height == 0:
                line_height = h * 1.2

            if y > last_bottom + line_height:
                if current_block:
                    blocks.append({
                        "text": current_block.strip(),
                        "coords": current_block_coords
                    })
                    current_block = ""
                    current_block_coords = [float('inf'), float('inf'), 0, 0]

            current_block += text + " "
            current_block_coords[0] = min(current_block_coords[0], x)
            current_block_coords[1] = min(current_block_coords[1], y)
            current_block_coords[2] = max(current_block_coords[2], x + w)
            current_block_coords[3] = max(current_block_coords[3], y + h)

            last_bottom = y + h

    if current_block:
        blocks.append({
            "text": current_block.strip(),
            "coords": current_block_coords
        })

    return blocks

def draw_blocks_on_image(image_path, blocks, output_path):
    image = cv2.imread(image_path)
    for block in blocks:
        coords = block['coords']
        cv2.rectangle(image, (coords[0], coords[1]), (coords[2], coords[3]), (0, 0, 255), 2)
    cv2.imwrite(output_path, image)
    return output_path

def process_image(image, output_folder, page_number):
    image = convert_to_rgb(image)
    blocks = extract_vertical_blocks(image)
    base_name = f'page_{page_number + 1}.png'
    image_path = os.path.join(output_folder, base_name)
    image.save(image_path)
    annotated_image_path = os.path.join(output_folder, f'annotated_{base_name}')
    annotated_image_path = draw_blocks_on_image(image_path, blocks, annotated_image_path)
    return blocks, annotated_image_path

def save_extracted_text(blocks, page_number, output_folder):
    text_file_path = os.path.join(output_folder, 'extracted_text.txt')
    with open(text_file_path, 'a', encoding='utf-8') as f:
        f.write(f"[PAGE {page_number}]\n")
        for block in blocks:
            f.write(block['text'] + "\n")
        f.write("[FIN DE PAGE]\n\n")
    return text_file_path

# Gemini Functions
def initialize_gemini():
    try:
        genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
        generation_config = {
            "temperature": 1,
            "top_p": 0.95,
            "top_k": 40,
            "max_output_tokens": 8192,
            "response_mime_type": "text/plain",
        }
        model = genai.GenerativeModel(
            model_name="gemini-1.5-pro",
            generation_config=generation_config,
        )
        return model
    except Exception as e:
        raise gr.Error(f"Error initializing Gemini: {str(e)}")

def create_prompt(extracted_text: str) -> str:
    data_to_extract = {
        "tribunal": "",
        "numero_rg": "",
        "date_ordonnance": "",
        "demandeurs": [],
        "defendeurs": [],
        "avocats_demandeurs": [],
        "avocats_defendeurs": []
    }

    prompt = f"""Tu es un assistant juridique expert en analyse de documents judiciaires français.
    Je vais te fournir le contenu d'un document judiciaire extrait d'un PDF.
    Ta tâche est d'analyser ce texte et d'en extraire les informations suivantes de manière précise :

    {json.dumps(data_to_extract, indent=2, ensure_ascii=False)}

    Voici quelques règles à suivre :
    - Si une information n'est pas présente dans le texte, indique "Non spécifié" pour cette catégorie.
    - Pour les noms des parties (demandeurs et défendeurs, et leurs avocats), liste tous ceux que tu trouves
    - Assure-toi de différencier correctement les demandeurs des défendeurs.
    - Si tu n'es pas sûr d'une information, indique-le clairement.

    Présente tes résultats sous forme de JSON, en utilisant les catégories mentionnées ci-dessus.

    Voici le contenu du document :

    {extracted_text.strip()}

    Analyse ce texte et fournis-moi les informations demandées au format JSON uniquement.""".strip()

    return prompt

def extract_data_with_gemini(text_file_path: str) -> dict:
    try:
        # Initialize Gemini
        model = initialize_gemini()

        # Read the extracted text
        with open(text_file_path, 'r', encoding='utf-8') as f:
            extracted_text = f.read()

        # Create prompt and get response
        prompt = create_prompt(extracted_text)
        response = model.generate_content(prompt)

        # Parse the JSON response
        try:
            # Extract JSON from the response text
            json_str = response.text
            if "json" in json_str.lower():
                json_str = json_str.split("json")[1].split("```")[0]
            elif "```" in json_str:
                json_str = json_str.split("```")[1]
            result = json.loads(json_str)
        except:
            result = {"error": "Failed to parse JSON response", "raw_response": response.text}

        return result
    except Exception as e:
        raise gr.Error(f"Error in Gemini processing: {str(e)}")

# Main Processing Function
def process_pdf(pdf_file):
    temp_dir = os.path.join(os.getcwd(), "temp_processing")
    output_dir = os.path.join(temp_dir, 'output_images')

    if os.path.exists(temp_dir):
        shutil.rmtree(temp_dir)
    os.makedirs(output_dir, exist_ok=True)

    try:
        # Convert PDF to images and process
        images = convert_from_path(pdf_file.name)
        annotated_images = []
        for i, img in enumerate(images):
            temp_img_path = os.path.join(temp_dir, f'temp_page_{i}.png')
            img.save(temp_img_path)
            blocks, annotated_image_path = process_image(temp_img_path, output_dir, i)
            annotated_images.append(annotated_image_path)
            save_extracted_text(blocks, i + 1, output_dir)

        # Create ZIP file
        zip_path = os.path.join(temp_dir, "annotated_images.zip")
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            for img_path in annotated_images:
                zipf.write(img_path, os.path.basename(img_path))

        # Get the text file
        text_file_path = os.path.join(output_dir, 'extracted_text.txt')

        # Process with Gemini
        extracted_data = extract_data_with_gemini(text_file_path)

        # Save extracted data to JSON file
        json_path = os.path.join(temp_dir, "extracted_data.json")
        with open(json_path, 'w', encoding='utf-8') as f:
            json.dump(extracted_data, f, ensure_ascii=False, indent=2)

        return text_file_path, zip_path, json_path

    except Exception as e:
        raise gr.Error(f"Error processing PDF: {str(e)}")

# Gradio Interface
css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
    color: white;
    border-radius: 8px;
    background: linear-gradient(45deg, #7928CA, #FF0080);
    border: none;
}
"""

demo = gr.Interface(
    fn=process_pdf,
    inputs=[
        gr.File(
            label="Upload PDF Document",
            file_types=[".pdf"],
            type="filepath"
        )
    ],
    outputs=[
        gr.File(label="Extracted Text (TXT)"),
        gr.File(label="Annotated Images (ZIP)"),
        gr.File(label="Extracted Data (JSON)")
    ],
    title="PDF Text Extraction and Analysis",
    description="""
    Upload a PDF document to:
    1. Extract text content
    2. Get annotated images showing detected text blocks
    3. Extract structured data using AI analysis

    Supports multiple pages and French legal documents.
    """,
    article="Created by [Your Name] - [Your GitHub/Profile Link]",
    css=css,
    examples=[],  # Add example PDFs if you have any
    cache_examples=False,
    theme=gr.themes.Soft()
)

# Launch the app
if __name__ == "__main__":
    demo.launch()