Spaces:
Sleeping
Sleeping
File size: 8,982 Bytes
40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 80bd1b0 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f 2fcabd1 40a6f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import gradio as gr
import os
import shutil
import fitz
from PIL import Image
import numpy as np
import cv2
import pytesseract
from pytesseract import Output
import zipfile
from pdf2image import convert_from_path
import google.generativeai as genai
import json
# Helper Functions
def convert_to_rgb(image_path):
img = Image.open(image_path)
rgb_img = img.convert("RGB")
return rgb_img
def preprocess_image(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
denoised = cv2.fastNlMeansDenoising(binary, None, 30, 7, 21)
resized = cv2.resize(denoised, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
return resized
def extract_vertical_blocks(image):
image_np = np.array(image)
data = pytesseract.image_to_data(image_np, lang='fra', output_type=Output.DICT)
blocks = []
current_block = ""
current_block_coords = [float('inf'), float('inf'), 0, 0]
last_bottom = -1
line_height = 0
for i in range(len(data['text'])):
if int(data['conf'][i]) > 0:
text = data['text'][i]
x, y, w, h = data['left'][i], data['top'][i], data['width'][i], data['height'][i]
if line_height == 0:
line_height = h * 1.2
if y > last_bottom + line_height:
if current_block:
blocks.append({
"text": current_block.strip(),
"coords": current_block_coords
})
current_block = ""
current_block_coords = [float('inf'), float('inf'), 0, 0]
current_block += text + " "
current_block_coords[0] = min(current_block_coords[0], x)
current_block_coords[1] = min(current_block_coords[1], y)
current_block_coords[2] = max(current_block_coords[2], x + w)
current_block_coords[3] = max(current_block_coords[3], y + h)
last_bottom = y + h
if current_block:
blocks.append({
"text": current_block.strip(),
"coords": current_block_coords
})
return blocks
def draw_blocks_on_image(image_path, blocks, output_path):
image = cv2.imread(image_path)
for block in blocks:
coords = block['coords']
cv2.rectangle(image, (coords[0], coords[1]), (coords[2], coords[3]), (0, 0, 255), 2)
cv2.imwrite(output_path, image)
return output_path
def process_image(image, output_folder, page_number):
image = convert_to_rgb(image)
blocks = extract_vertical_blocks(image)
base_name = f'page_{page_number + 1}.png'
image_path = os.path.join(output_folder, base_name)
image.save(image_path)
annotated_image_path = os.path.join(output_folder, f'annotated_{base_name}')
annotated_image_path = draw_blocks_on_image(image_path, blocks, annotated_image_path)
return blocks, annotated_image_path
def save_extracted_text(blocks, page_number, output_folder):
text_file_path = os.path.join(output_folder, 'extracted_text.txt')
with open(text_file_path, 'a', encoding='utf-8') as f:
f.write(f"[PAGE {page_number}]\n")
for block in blocks:
f.write(block['text'] + "\n")
f.write("[FIN DE PAGE]\n\n")
return text_file_path
# Gemini Functions
def initialize_gemini():
try:
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
)
return model
except Exception as e:
raise gr.Error(f"Error initializing Gemini: {str(e)}")
def create_prompt(extracted_text: str) -> str:
data_to_extract = {
"tribunal": "",
"numero_rg": "",
"date_ordonnance": "",
"demandeurs": [],
"defendeurs": [],
"avocats_demandeurs": [],
"avocats_defendeurs": []
}
prompt = f"""Tu es un assistant juridique expert en analyse de documents judiciaires français.
Je vais te fournir le contenu d'un document judiciaire extrait d'un PDF.
Ta tâche est d'analyser ce texte et d'en extraire les informations suivantes de manière précise :
{json.dumps(data_to_extract, indent=2, ensure_ascii=False)}
Voici quelques règles à suivre :
- Si une information n'est pas présente dans le texte, indique "Non spécifié" pour cette catégorie.
- Pour les noms des parties (demandeurs et défendeurs, et leurs avocats), liste tous ceux que tu trouves
- Assure-toi de différencier correctement les demandeurs des défendeurs.
- Si tu n'es pas sûr d'une information, indique-le clairement.
Présente tes résultats sous forme de JSON, en utilisant les catégories mentionnées ci-dessus.
Voici le contenu du document :
{extracted_text.strip()}
Analyse ce texte et fournis-moi les informations demandées au format JSON uniquement.""".strip()
return prompt
def extract_data_with_gemini(text_file_path: str) -> dict:
try:
# Initialize Gemini
model = initialize_gemini()
# Read the extracted text
with open(text_file_path, 'r', encoding='utf-8') as f:
extracted_text = f.read()
# Create prompt and get response
prompt = create_prompt(extracted_text)
response = model.generate_content(prompt)
# Parse the JSON response
try:
# Extract JSON from the response text
json_str = response.text
if "json" in json_str.lower():
json_str = json_str.split("json")[1].split("```")[0]
elif "```" in json_str:
json_str = json_str.split("```")[1]
result = json.loads(json_str)
except:
result = {"error": "Failed to parse JSON response", "raw_response": response.text}
return result
except Exception as e:
raise gr.Error(f"Error in Gemini processing: {str(e)}")
# Main Processing Function
def process_pdf(pdf_file):
temp_dir = os.path.join(os.getcwd(), "temp_processing")
output_dir = os.path.join(temp_dir, 'output_images')
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(output_dir, exist_ok=True)
try:
# Convert PDF to images and process
images = convert_from_path(pdf_file.name)
annotated_images = []
for i, img in enumerate(images):
temp_img_path = os.path.join(temp_dir, f'temp_page_{i}.png')
img.save(temp_img_path)
blocks, annotated_image_path = process_image(temp_img_path, output_dir, i)
annotated_images.append(annotated_image_path)
save_extracted_text(blocks, i + 1, output_dir)
# Create ZIP file
zip_path = os.path.join(temp_dir, "annotated_images.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for img_path in annotated_images:
zipf.write(img_path, os.path.basename(img_path))
# Get the text file
text_file_path = os.path.join(output_dir, 'extracted_text.txt')
# Process with Gemini
extracted_data = extract_data_with_gemini(text_file_path)
# Save extracted data to JSON file
json_path = os.path.join(temp_dir, "extracted_data.json")
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(extracted_data, f, ensure_ascii=False, indent=2)
return text_file_path, zip_path, json_path
except Exception as e:
raise gr.Error(f"Error processing PDF: {str(e)}")
# Gradio Interface
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-radius: 8px;
background: linear-gradient(45deg, #7928CA, #FF0080);
border: none;
}
"""
demo = gr.Interface(
fn=process_pdf,
inputs=[
gr.File(
label="Upload PDF Document",
file_types=[".pdf"],
type="filepath"
)
],
outputs=[
gr.File(label="Extracted Text (TXT)"),
gr.File(label="Annotated Images (ZIP)"),
gr.File(label="Extracted Data (JSON)")
],
title="PDF Text Extraction and Analysis",
description="""
Upload a PDF document to:
1. Extract text content
2. Get annotated images showing detected text blocks
3. Extract structured data using AI analysis
Supports multiple pages and French legal documents.
""",
article="Created by [Your Name] - [Your GitHub/Profile Link]",
css=css,
examples=[], # Add example PDFs if you have any
cache_examples=False,
theme=gr.themes.Soft()
)
# Launch the app
if __name__ == "__main__":
demo.launch() |