Spaces:
Running
Running
File size: 31,269 Bytes
806953a 7e12cb7 87c3140 e91ac58 c5e57d6 ae215ea c5e57d6 e91ac58 524a99c a145e37 524a99c ae215ea e91ac58 c5e57d6 1881d06 e91ac58 524a99c ae215ea e91ac58 1881d06 e91ac58 c5e57d6 a145e37 1881d06 524a99c e91ac58 87c3140 e91ac58 87c3140 e91ac58 c5e57d6 ae215ea c5e57d6 e91ac58 524a99c a145e37 524a99c ae215ea 1881d06 524a99c 87c3140 e91ac58 87c3140 e91ac58 524a99c e91ac58 c5e57d6 a145e37 1881d06 524a99c 87c3140 e91ac58 87c3140 c5e57d6 a145e37 1881d06 524a99c 87c3140 e91ac58 87c3140 524a99c 87c3140 e91ac58 87c3140 e91ac58 c5e57d6 ae215ea c5e57d6 e91ac58 524a99c a145e37 524a99c ae215ea 1881d06 87c3140 e9f4039 87c3140 e91ac58 87c3140 e9f4039 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 e91ac58 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 806953a 87c3140 e91ac58 87c3140 3b60ff3 87c3140 3b60ff3 87c3140 7a93196 3b60ff3 7a93196 e91ac58 7a93196 3b60ff3 e91ac58 806953a e91ac58 806953a e91ac58 806953a e91ac58 806953a e91ac58 806953a 87c3140 806953a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import os #, yaml, platform, traceback
from vouchervision.LeafMachine2_Config_Builder import get_default_download_folder #, write_config_file
# from vouchervision.general_utils import validate_dir, print_main_fail
# from vouchervision.vouchervision_main import voucher_vision
from vouchervision.general_utils import get_cfg_from_full_path
def build_VV_config(loaded_cfg=None):
if loaded_cfg is None:
#############################################
############ Set common defaults ############
#############################################
# Changing the values below will set new
# default values each time you open the
# VoucherVision user interface
#############################################
#############################################
#############################################
dir_home = os.path.dirname(os.path.dirname(__file__))
run_name = 'test'
# dir_images_local = 'D:/Dropbox/LM2_Env/Image_Datasets/GBIF_BroadSample_3SppPerFamily1'
dir_images_local = os.path.join(dir_home,'demo','demo_images')
# The default output location is the computer's "Downloads" folder
# You can set dir_output directly by typing the folder path,
# OR you can uncomment the line "dir_output = default_output_folder"
# to have VoucherVision save to the Downloads folder by default
default_output_folder = get_default_download_folder()
dir_output = default_output_folder
# dir_output = 'D:/D_Desktop/LM2'
prefix_removal = '' #'MICH-V-'
suffix_removal = ''
catalog_numerical_only = False
save_cropped_annotations = ['label','barcode']
do_use_trOCR = False
do_use_florence = False
trOCR_model_path = "microsoft/trocr-large-handwritten"
florence_model_path = "microsoft/Florence-2-large"
OCR_option = 'hand'
OCR_option_llava = 'llava-v1.6-mistral-7b' # "llava-v1.6-mistral-7b", "llava-v1.6-34b", "llava-v1.6-vicuna-13b", "llava-v1.6-vicuna-7b",
OCR_option_llava_bit = 'full' # full or 4bit
OCR_GPT_4o_mini_resolution = 'high'
double_OCR = False
tool_GEO = True
tool_WFO = True
tool_wikipedia = True
check_for_illegal_filenames = False
LLM_version_user = 'Gemini 1.5 Flash' # 'Azure GPT 4' #'Azure GPT 4 Turbo 1106-preview'
prompt_version = 'SLTPvM_long.yaml' # from ["Version 1", "Version 1 No Domain Knowledge", "Version 2"]
use_LeafMachine2_collage_images = 0 # Use LeafMachine2 collage images [0, 1, 2]
do_create_OCR_helper_image = True
batch_size = 500
num_workers = 8
skip_vertical = False
pdf_conversion_dpi = 100
path_domain_knowledge = '' #os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx')
embeddings_database_name = '' #os.path.splitext(os.path.basename(path_domain_knowledge))[0]
specimen_rotate = False # False = counter clock, True = clock
#############################################
#############################################
########## DO NOT EDIT BELOW HERE ###########
#############################################
#############################################
return assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image, do_use_trOCR, do_use_florence, trOCR_model_path, florence_model_path, OCR_option, OCR_option_llava,
OCR_option_llava_bit, OCR_GPT_4o_mini_resolution, double_OCR, save_cropped_annotations,
tool_GEO, tool_WFO, tool_wikipedia,specimen_rotate,
check_for_illegal_filenames, skip_vertical, pdf_conversion_dpi, use_domain_knowledge=False)
else:
dir_home = os.path.dirname(os.path.dirname(__file__))
run_name = loaded_cfg['leafmachine']['project']['run_name']
dir_images_local = loaded_cfg['leafmachine']['project']['dir_images_local']
default_output_folder = loaded_cfg['leafmachine']['project']['dir_output']
dir_output = loaded_cfg['leafmachine']['project']['dir_output']
prefix_removal = loaded_cfg['leafmachine']['project']['prefix_removal']
suffix_removal = loaded_cfg['leafmachine']['project']['suffix_removal']
catalog_numerical_only = loaded_cfg['leafmachine']['project']['catalog_numerical_only']
do_use_trOCR = loaded_cfg['leafmachine']['project']['do_use_trOCR']
do_use_florence = loaded_cfg['leafmachine']['project']['do_use_florence']
trOCR_model_path = loaded_cfg['leafmachine']['project']['trOCR_model_path']
florence_model_path = loaded_cfg['leafmachine']['project']['florence_model_path']
OCR_option = loaded_cfg['leafmachine']['project']['OCR_option']
OCR_option_llava = loaded_cfg['leafmachine']['project']['OCR_option_llava']
OCR_option_llava_bit = loaded_cfg['leafmachine']['project']['OCR_option_llava_bit']
OCR_GPT_4o_mini_resolution = loaded_cfg['leafmachine']['project']['OCR_GPT_4o_mini_resolution']
double_OCR = loaded_cfg['leafmachine']['project']['double_OCR']
tool_GEO = loaded_cfg['leafmachine']['project']['tool_GEO']
tool_WFO = loaded_cfg['leafmachine']['project']['tool_WFO']
tool_wikipedia = loaded_cfg['leafmachine']['project']['tool_wikipedia']
specimen_rotate = loaded_cfg['leafmachine']['project']['specimen_rotate']
pdf_conversion_dpi = loaded_cfg['leafmachine']['project']['pdf_conversion_dpi']
LLM_version_user = loaded_cfg['leafmachine']['LLM_version']
prompt_version = loaded_cfg['leafmachine']['project']['prompt_version']
use_LeafMachine2_collage_images = loaded_cfg['leafmachine']['use_RGB_label_images']
do_create_OCR_helper_image = loaded_cfg['leafmachine']['do_create_OCR_helper_image']
batch_size = loaded_cfg['leafmachine']['project']['batch_size']
num_workers = loaded_cfg['leafmachine']['project']['num_workers']
path_domain_knowledge = loaded_cfg['leafmachine']['project']['path_to_domain_knowledge_xlsx']
embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0]
save_cropped_annotations = loaded_cfg['leafmachine']['cropped_components']['save_cropped_annotations']
check_for_illegal_filenames = loaded_cfg['leafmachine']['do']['check_for_illegal_filenames']
skip_vertical = loaded_cfg['leafmachine']['do']['skip_vertical']
return assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image, do_use_trOCR, do_use_florence, trOCR_model_path, florence_model_path, OCR_option, OCR_option_llava,
OCR_option_llava_bit, OCR_GPT_4o_mini_resolution, double_OCR, save_cropped_annotations,
tool_GEO, tool_WFO, tool_wikipedia,specimen_rotate,
check_for_illegal_filenames, skip_vertical, pdf_conversion_dpi, use_domain_knowledge=False)
def assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image_user, do_use_trOCR, do_use_florence, trOCR_model_path, florence_model_path, OCR_option, OCR_option_llava,
OCR_option_llava_bit, OCR_GPT_4o_mini_resolution, double_OCR, save_cropped_annotations,
tool_GEO, tool_WFO, tool_wikipedia,specimen_rotate,
check_for_illegal_filenames, skip_vertical, pdf_conversion_dpi, use_domain_knowledge=False):
# Initialize the base structure
config_data = {
'leafmachine': {}
}
# Modular sections to be added to 'leafmachine'
do_section = {
'check_for_illegal_filenames': check_for_illegal_filenames,
'check_for_corrupt_images_make_vertical': True,
'skip_vertical': skip_vertical,
}
print_section = {
'verbose': True,
'optional_warnings': True
}
logging_section = {
'log_level': None
}
project_section = {
'dir_output': dir_output,
'run_name': run_name,
'image_location': 'local',
'batch_size': batch_size,
'num_workers': num_workers,
'dir_images_local': dir_images_local,
'continue_run_from_partial_xlsx': '',
'prefix_removal': prefix_removal,
'suffix_removal': suffix_removal,
'catalog_numerical_only': catalog_numerical_only,
'use_domain_knowledge': use_domain_knowledge,
'embeddings_database_name': embeddings_database_name,
'build_new_embeddings_database': False,
'path_to_domain_knowledge_xlsx': path_domain_knowledge,
'prompt_version': prompt_version,
'delete_all_temps': False,
'delete_temps_keep_VVE': False,
'do_use_trOCR': do_use_trOCR,
'do_use_florence': do_use_florence,
'trOCR_model_path': trOCR_model_path,
'florence_model_path': florence_model_path,
'OCR_option': OCR_option,
'OCR_option_llava': OCR_option_llava,
'OCR_option_llava_bit': OCR_option_llava_bit,
'OCR_GPT_4o_mini_resolution': OCR_GPT_4o_mini_resolution,
'double_OCR': double_OCR,
'pdf_conversion_dpi': pdf_conversion_dpi,
'tool_GEO': tool_GEO,
'tool_WFO': tool_WFO,
'tool_wikipedia': tool_wikipedia,
'specimen_rotate': specimen_rotate,
}
modules_section = {
'specimen_crop': True
}
LLM_version = LLM_version_user
use_RGB_label_images = use_LeafMachine2_collage_images # Use LeafMachine2 collage images
do_create_OCR_helper_image = do_create_OCR_helper_image_user
cropped_components_section = {
'do_save_cropped_annotations': True,
'save_cropped_annotations': save_cropped_annotations,
'save_per_image': False,
'save_per_annotation_class': True,
'binarize_labels': False,
'binarize_labels_skeletonize': False
}
data_section = {
'save_json_rulers': False,
'save_json_measurements': False,
'save_individual_csv_files_rulers': False,
'save_individual_csv_files_measurements': False,
'save_individual_csv_files_landmarks': False,
'save_individual_efd_files': False,
'include_darwin_core_data_from_combined_file': False,
'do_apply_conversion_factor': False
}
overlay_section = {
'save_overlay_to_pdf': False,
'save_overlay_to_jpgs': True,
'overlay_dpi': 300, # Between 100 to 300
'overlay_background_color': 'black', # Either 'white' or 'black'
'show_archival_detections': True,
'show_plant_detections': True,
'show_segmentations': True,
'show_landmarks': True,
'ignore_archival_detections_classes': [],
'ignore_plant_detections_classes': ['leaf_whole', 'specimen'], # Could also include 'leaf_partial' and others if needed
'ignore_landmark_classes': [],
'line_width_archival': 12, # Previous value given was 2
'line_width_plant': 12, # Previous value given was 6
'line_width_seg': 12, # 12 is specified as "thick"
'line_width_efd': 12, # 3 is specified as "thick" but 12 is given here
'alpha_transparency_archival': 0.3,
'alpha_transparency_plant': 0,
'alpha_transparency_seg_whole_leaf': 0.4,
'alpha_transparency_seg_partial_leaf': 0.3
}
archival_component_detector_section = {
'detector_type': 'Archival_Detector',
'detector_version': 'PREP_final',
'detector_iteration': 'PREP_final',
'detector_weights': 'best.pt',
'minimum_confidence_threshold': 0.5, # Default is 0.5
'do_save_prediction_overlay_images': True,
'ignore_objects_for_overlay': []
}
# Add the sections to the 'leafmachine' key
config_data['leafmachine']['do'] = do_section
config_data['leafmachine']['print'] = print_section
config_data['leafmachine']['logging'] = logging_section
config_data['leafmachine']['project'] = project_section
config_data['leafmachine']['LLM_version'] = LLM_version
config_data['leafmachine']['use_RGB_label_images'] = use_RGB_label_images
config_data['leafmachine']['do_create_OCR_helper_image'] = do_create_OCR_helper_image
config_data['leafmachine']['cropped_components'] = cropped_components_section
config_data['leafmachine']['modules'] = modules_section
config_data['leafmachine']['data'] = data_section
config_data['leafmachine']['overlay'] = overlay_section
config_data['leafmachine']['archival_component_detector'] = archival_component_detector_section
return config_data, dir_home
# def build_api_tests(api):
# dir_home = os.path.dirname(os.path.dirname(__file__))
# path_to_configs = os.path.join(dir_home,'demo','demo_configs')
# dir_home = os.path.dirname(os.path.dirname(__file__))
# dir_images_local = os.path.join(dir_home,'demo','demo_images')
# validate_dir(os.path.join(dir_home,'demo','demo_configs'))
# path_domain_knowledge = os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx')
# embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0]
# prefix_removal = ''
# suffix_removal = ''
# catalog_numerical_only = False
# batch_size = 500
# do_create_OCR_helper_image = False
# # ### Option 1: "GPT 4" of ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5", "PaLM 2"]
# # LLM_version_user = 'Azure GPT 4'
# # ### Option 2: False of [False, True]
# # use_LeafMachine2_collage_images = False
# # ### Option 3: False of [False, True]
# # use_domain_knowledge = True
# test_results = {}
# if api == 'openai':
# OPT1, OPT2, OPT3 = TestOptionsAPI_openai.get_options()
# elif api == 'palm':
# OPT1, OPT2, OPT3 = TestOptionsAPI_palm.get_options()
# elif api == 'azure_openai':
# OPT1, OPT2, OPT3 = TestOptionsAPI_azure_openai.get_options()
# else:
# raise
# ind = -1
# ind_opt1 = -1
# ind_opt2 = -1
# ind_opt3 = -1
# for opt1 in OPT1:
# ind_opt1+= 1
# for opt2 in OPT2:
# ind_opt2 += 1
# for opt3 in OPT3:
# ind += 1
# ind_opt3 += 1
# LLM_version_user = opt1
# use_LeafMachine2_collage_images = opt2
# prompt_version = opt3
# filename = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}.yaml"
# run_name = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}"
# dir_output = os.path.join(dir_home,'demo','demo_output','run_name')
# validate_dir(dir_output)
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
# prompt_version,do_create_OCR_helper_image)
# write_config_file(config_data, os.path.join(dir_home,'demo','demo_configs'),filename=filename)
# test_results[run_name] = False
# ind_opt3 = -1
# ind_opt2 = -1
# ind_opt1 = -1
# return dir_home, path_to_configs, test_results
# def build_demo_tests(llm_version):
# dir_home = os.path.dirname(os.path.dirname(__file__))
# path_to_configs = os.path.join(dir_home,'demo','demo_configs')
# dir_home = os.path.dirname(os.path.dirname(__file__))
# dir_images_local = os.path.join(dir_home,'demo','demo_images')
# validate_dir(os.path.join(dir_home,'demo','demo_configs'))
# path_domain_knowledge = os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx')
# embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0]
# prefix_removal = ''
# suffix_removal = ''
# catalog_numerical_only = False
# batch_size = 500
# do_create_OCR_helper_image = False
# # ### Option 1: "GPT 4" of ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5", "PaLM 2"]
# # LLM_version_user = 'Azure GPT 4'
# # ### Option 2: False of [False, True]
# # use_LeafMachine2_collage_images = False
# # ### Option 3: False of [False, True]
# # use_domain_knowledge = True
# test_results = {}
# if llm_version == 'gpt':
# OPT1, OPT2, OPT3 = TestOptionsGPT.get_options()
# elif llm_version == 'palm':
# OPT1, OPT2, OPT3 = TestOptionsPalm.get_options()
# else:
# raise
# ind = -1
# ind_opt1 = -1
# ind_opt2 = -1
# ind_opt3 = -1
# for opt1 in OPT1:
# ind_opt1+= 1
# for opt2 in OPT2:
# ind_opt2 += 1
# for opt3 in OPT3:
# ind += 1
# ind_opt3 += 1
# LLM_version_user = opt1
# use_LeafMachine2_collage_images = opt2
# prompt_version = opt3
# filename = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}.yaml"
# run_name = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}"
# dir_output = os.path.join(dir_home,'demo','demo_output','run_name')
# validate_dir(dir_output)
# if llm_version == 'gpt':
# if prompt_version in ['Version 1']:
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
# prompt_version, do_create_OCR_helper_image, use_domain_knowledge=True)
# else:
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
# prompt_version, do_create_OCR_helper_image)
# elif llm_version == 'palm':
# if prompt_version in ['Version 1 PaLM 2']:
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
# prompt_version, do_create_OCR_helper_image, use_domain_knowledge=True)
# else:
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
# prompt_version, do_create_OCR_helper_image)
# write_config_file(config_data, os.path.join(dir_home,'demo','demo_configs'),filename=filename)
# test_results[run_name] = False
# ind_opt3 = -1
# ind_opt2 = -1
# ind_opt1 = -1
# return dir_home, path_to_configs, test_results
class TestOptionsGPT:
OPT1 = ["gpt-4-1106-preview","GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5"]
OPT2 = [False, True]
OPT3 = ["Version 1", "Version 1 No Domain Knowledge", "Version 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 24
class TestOptionsPalm:
OPT1 = ["PaLM 2"]
OPT2 = [False, True]
OPT3 = ["Version 1 PaLM 2", "Version 1 PaLM 2 No Domain Knowledge", "Version 2 PaLM 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 6
class TestOptionsAPI_openai:
OPT1 = ["GPT 3.5"]
OPT2 = [False]
OPT3 = ["Version 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 24
class TestOptionsAPI_azure_openai:
OPT1 = ["Azure GPT 3.5"]
OPT2 = [False]
OPT3 = ["Version 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 24
class TestOptionsAPI_palm:
OPT1 = ["PaLM 2"]
OPT2 = [False]
OPT3 = ["Version 2 PaLM 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 6
# def run_demo_tests_GPT(progress_report):
# dir_home, path_to_configs, test_results = build_demo_tests('gpt')
# progress_report.set_n_overall(len(test_results.items()))
# JSON_results = {}
# for ind, (cfg, result) in enumerate(test_results.items()):
# OPT1, OPT2, OPT3 = TestOptionsGPT.get_options()
# test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__')
# opt1_readable = OPT1[int(ind_opt1.split('-')[1])]
# if opt1_readable in ["Azure GPT 4", "Azure GPT 3.5"]:
# api_version = 'gpt-azure'
# elif opt1_readable in ["GPT 4", "GPT 3.5"]:
# api_version = 'gpt'
# else:
# raise
# opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images"
# opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}"
# # Construct the human-readable test name
# human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}"
# get_n_overall = progress_report.get_n_overall()
# progress_report.update_overall(f"Test {int(test_ind)+1} of {get_n_overall} --- Validating {human_readable_name}")
# print_main_fail(f"Starting validation test: {human_readable_name}")
# cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml']))
# if check_API_key(dir_home, api_version) and check_API_key(dir_home, 'google-vision-ocr'):
# try:
# last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, cfg_test=None, progress_report=progress_report, test_ind=int(test_ind))
# test_results[cfg] = True
# JSON_results[ind] = last_JSON_response
# except Exception as e:
# JSON_results[ind] = None
# test_results[cfg] = False
# print(f"An exception occurred: {e}")
# traceback.print_exc() # This will print the full traceback
# else:
# fail_response = ''
# if not check_API_key(dir_home, 'google-vision-ocr'):
# fail_response += "No API key found for Google Vision OCR"
# if not check_API_key(dir_home, api_version):
# fail_response += f" + No API key found for {api_version}"
# test_results[cfg] = False
# JSON_results[ind] = fail_response
# print(f"No API key found for {fail_response}")
# return test_results, JSON_results
# def run_demo_tests_Palm(progress_report):
# api_version = 'palm'
# dir_home, path_to_configs, test_results = build_demo_tests('palm')
# progress_report.set_n_overall(len(test_results.items()))
# JSON_results = {}
# for ind, (cfg, result) in enumerate(test_results.items()):
# OPT1, OPT2, OPT3 = TestOptionsPalm.get_options()
# test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__')
# opt1_readable = OPT1[int(ind_opt1.split('-')[1])]
# opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images"
# opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}"
# # opt3_readable = "Use Domain Knowledge" if OPT3[int(ind_opt3.split('-')[1])] else "Don't use Domain Knowledge"
# # Construct the human-readable test name
# human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}"
# get_n_overall = progress_report.get_n_overall()
# progress_report.update_overall(f"Test {int(test_ind)+1} of {get_n_overall} --- Validating {human_readable_name}")
# print_main_fail(f"Starting validation test: {human_readable_name}")
# cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml']))
# if check_API_key(dir_home, api_version) and check_API_key(dir_home, 'google-vision-ocr') :
# try:
# last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, cfg_test=None, path_custom_prompts=None, progress_report=progress_report, test_ind=int(test_ind))
# test_results[cfg] = True
# JSON_results[ind] = last_JSON_response
# except Exception as e:
# test_results[cfg] = False
# JSON_results[ind] = None
# print(f"An exception occurred: {e}")
# traceback.print_exc() # This will print the full traceback
# else:
# fail_response = ''
# if not check_API_key(dir_home, 'google-vision-ocr'):
# fail_response += "No API key found for Google Vision OCR"
# if not check_API_key(dir_home, api_version):
# fail_response += f" + No API key found for {api_version}"
# test_results[cfg] = False
# JSON_results[ind] = fail_response
# print(f"No API key found for {fail_response}")
# return test_results, JSON_results
# def run_api_tests(api):
# try:
# dir_home, path_to_configs, test_results = build_api_tests(api)
# JSON_results = {}
# for ind, (cfg, result) in enumerate(test_results.items()):
# if api == 'openai':
# OPT1, OPT2, OPT3 = TestOptionsAPI_openai.get_options()
# elif 'azure_openai':
# OPT1, OPT2, OPT3 = TestOptionsAPI_azure_openai.get_options()
# elif 'palm':
# OPT1, OPT2, OPT3 = TestOptionsAPI_palm.get_options()
# test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__')
# opt1_readable = OPT1[int(ind_opt1.split('-')[1])]
# opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images"
# opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}"
# # opt3_readable = "Use Domain Knowledge" if OPT3[int(ind_opt3.split('-')[1])] else "Don't use Domain Knowledge"
# # Construct the human-readable test name
# human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}"
# print_main_fail(f"Starting validation test: {human_readable_name}")
# cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml']))
# if check_API_key(dir_home, api) and check_API_key(dir_home, 'google-vision-ocr') :
# try:
# last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, None,path_custom_prompts=None , cfg_test=None, progress_report=None, test_ind=int(test_ind))
# test_results[cfg] = True
# JSON_results[ind] = last_JSON_response
# return True
# except Exception as e:
# print(e)
# return False
# else:
# return False
# except Exception as e:
# print(e)
# return False
def has_API_key(val):
if val != '':
return True
else:
return False
def check_if_usable(is_hf): ############################################################################################################## TODO fix
if is_hf:
return True ########### needs actual logic. borrow from another function to not repeat this
else:
dir_home = os.path.dirname(os.path.dirname(__file__))
path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
cfg_private = get_cfg_from_full_path(path_cfg_private)
has_key_openai = has_API_key(cfg_private['openai']['OPENAI_API_KEY'])
has_key_azure_openai = has_API_key(cfg_private['openai_azure']['OPENAI_API_VERSION'])
has_key_google_OCR = has_API_key(cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS'])
has_key_MISTRAL = has_API_key(cfg_private['mistral']['MISTRAL_API_KEY'])
if has_key_google_OCR and (has_key_azure_openai or has_key_openai or has_key_MISTRAL):
return True
else:
return False
# def check_API_key(dir_home, api_version):
# dir_home = os.path.dirname(os.path.dirname(__file__))
# path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
# cfg_private = get_cfg_from_full_path(path_cfg_private)
# has_key_openai = has_API_key(cfg_private['openai']['OPENAI_API_KEY'])
# has_key_azure_openai = has_API_key(cfg_private['openai_azure']['api_version'])
# # has_key_palm2 = has_API_key(cfg_private['google_palm']['google_palm_api'])
# has_key_google_OCR = has_API_key(cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS'])
# if api_version in ['gpt','openai'] and has_key_openai:
# return True
# elif api_version in ['gpt-azure', 'azure_openai'] and has_key_azure_openai:
# return True
# elif api_version == 'google-vision-ocr' and has_key_google_OCR:
# return True
# else:
# return False
|