Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
-
# app.py β’ SchoolSpiritΒ AI chatbot Space
|
2 |
-
# Graniteβ3.3β2BβInstruct | Streaming + rateβlimit + hallucination guard
|
3 |
import os, re, time, datetime, threading, traceback, torch, gradio as gr
|
4 |
-
from transformers import
|
5 |
from transformers.utils import logging as hf_logging
|
6 |
|
7 |
-
# βββββββββββββββββββββββββββββββββ Log helper ββββββββββββββββββββββββββββββββ
|
8 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
9 |
LOG_FILE = "/data/requests.log"
|
10 |
-
def log(
|
11 |
-
|
12 |
-
line = f"[{ts}] {msg}"
|
13 |
print(line, flush=True)
|
14 |
try:
|
15 |
with open(LOG_FILE, "a") as f:
|
@@ -17,13 +13,9 @@ def log(msg: str):
|
|
17 |
except FileNotFoundError:
|
18 |
pass
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
MAX_NEW_TOKENS = 120
|
24 |
-
TEMP = 0.6
|
25 |
-
MAX_INPUT_CH = 300
|
26 |
-
RATE_N, RATE_SEC = 5, 60 # 5 msgs / 60Β s per IP
|
27 |
|
28 |
SYSTEM_MSG = (
|
29 |
"You are **SchoolSpiritΒ AI**, the friendly digital mascot of "
|
@@ -37,121 +29,90 @@ SYSTEM_MSG = (
|
|
37 |
"β’ If you canβt answer, politely direct the user to [email protected].\n"
|
38 |
"β’ Keep language ageβappropriate; avoid profanity, politics, mature themes."
|
39 |
)
|
40 |
-
WELCOME = "HiΒ there! Iβm SchoolSpiritΒ AI.
|
41 |
|
42 |
strip = lambda s: re.sub(r"\s+", " ", s.strip())
|
43 |
|
44 |
-
# βββββββββββββββββββββββ Load tokenizer & model ββββββββββββββββββββββββββββββ
|
45 |
hf_logging.set_verbosity_error()
|
46 |
try:
|
47 |
-
log("Loading tokenizer β¦")
|
48 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
torch_dtype=torch.float16,
|
56 |
-
)
|
57 |
-
else:
|
58 |
-
log("No GPU β loading model on CPU (this is slower)")
|
59 |
-
model = AutoModelForCausalLM.from_pretrained(
|
60 |
-
MODEL_ID,
|
61 |
-
device_map="cpu",
|
62 |
-
torch_dtype="auto",
|
63 |
-
low_cpu_mem_usage=True,
|
64 |
-
)
|
65 |
-
|
66 |
MODEL_ERR = None
|
67 |
-
log("Model loaded
|
68 |
-
except Exception as
|
69 |
-
MODEL_ERR = f"Model load error: {
|
70 |
-
log(
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
def allowed(ip: str) -> bool:
|
75 |
now = time.time()
|
76 |
-
VISITS[ip] = [t for t in VISITS.get(ip, []) if now - t <
|
77 |
if len(VISITS[ip]) >= RATE_N:
|
78 |
return False
|
79 |
VISITS[ip].append(now)
|
80 |
return True
|
81 |
|
82 |
-
|
83 |
-
def build_prompt(raw: list[dict]) -> str:
|
84 |
def render(m):
|
85 |
if m["role"] == "system":
|
86 |
return m["content"]
|
87 |
-
|
88 |
-
|
89 |
-
system, convo = raw[0], raw[1:]
|
90 |
while True:
|
91 |
-
parts = [
|
92 |
-
if len(tok.encode("\n".join(parts), add_special_tokens=False)) <=
|
93 |
return "\n".join(parts)
|
94 |
-
convo = convo[2:]
|
95 |
|
96 |
-
|
97 |
-
def chat_fn(user_msg, chat_hist, state, request: gr.Request):
|
98 |
ip = request.client.host if request else "anon"
|
99 |
if not allowed(ip):
|
100 |
-
|
101 |
-
return
|
102 |
-
|
103 |
user_msg = strip(user_msg or "")
|
104 |
if not user_msg:
|
105 |
-
return
|
106 |
-
if len(user_msg) >
|
107 |
-
|
108 |
-
return
|
109 |
if MODEL_ERR:
|
110 |
-
|
111 |
-
return
|
112 |
|
113 |
-
|
114 |
-
chat_hist.append((user_msg, ""))
|
115 |
state["raw"].append({"role": "user", "content": user_msg})
|
116 |
|
117 |
prompt = build_prompt(state["raw"])
|
118 |
-
|
119 |
-
|
120 |
streamer = TextIteratorStreamer(tok, skip_prompt=True, skip_special_tokens=True)
|
121 |
threading.Thread(
|
122 |
target=model.generate,
|
123 |
-
kwargs=dict(
|
124 |
-
input_ids=input_ids,
|
125 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
126 |
-
temperature=TEMP,
|
127 |
-
streamer=streamer,
|
128 |
-
),
|
129 |
).start()
|
130 |
|
131 |
partial = ""
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
chat_hist[-1] = (user_msg, partial)
|
140 |
-
yield chat_hist, state
|
141 |
-
except Exception as exc:
|
142 |
-
log("β Stream error:\n" + traceback.format_exc())
|
143 |
-
partial = "Apologiesβinternal error. Please try again."
|
144 |
|
145 |
reply = strip(partial)
|
146 |
-
|
147 |
state["raw"].append({"role": "assistant", "content": reply})
|
148 |
-
yield
|
149 |
|
150 |
-
# βββββββββββββββββββββββββββ Gradio Blocks UI ββββββββββββββββββββββββββββββββ
|
151 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
152 |
gr.Markdown("### SchoolSpiritΒ AI Chat")
|
153 |
-
bot = gr.Chatbot(value=[("", WELCOME)], height=480
|
154 |
-
st
|
155 |
"raw": [
|
156 |
{"role": "system", "content": SYSTEM_MSG},
|
157 |
{"role": "assistant", "content": WELCOME},
|
@@ -159,8 +120,8 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
|
159 |
})
|
160 |
with gr.Row():
|
161 |
txt = gr.Textbox(placeholder="Type your question hereβ¦", show_label=False, lines=1, scale=4)
|
162 |
-
|
163 |
-
|
164 |
-
txt.submit(chat_fn, inputs=[txt, bot, st], outputs=[bot, st])
|
165 |
|
166 |
demo.launch()
|
|
|
|
|
|
|
1 |
import os, re, time, datetime, threading, traceback, torch, gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
3 |
from transformers.utils import logging as hf_logging
|
4 |
|
|
|
5 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
6 |
LOG_FILE = "/data/requests.log"
|
7 |
+
def log(m):
|
8 |
+
line = f"[{datetime.datetime.utcnow().strftime('%H:%M:%S.%f')[:-3]}] {m}"
|
|
|
9 |
print(line, flush=True)
|
10 |
try:
|
11 |
with open(LOG_FILE, "a") as f:
|
|
|
13 |
except FileNotFoundError:
|
14 |
pass
|
15 |
|
16 |
+
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct"
|
17 |
+
CTX_TOK, MAX_NEW, TEMP = 1800, 64, 0.6
|
18 |
+
MAX_IN, RATE_N, RATE_T = 300, 5, 60
|
|
|
|
|
|
|
|
|
19 |
|
20 |
SYSTEM_MSG = (
|
21 |
"You are **SchoolSpiritΒ AI**, the friendly digital mascot of "
|
|
|
29 |
"β’ If you canβt answer, politely direct the user to [email protected].\n"
|
30 |
"β’ Keep language ageβappropriate; avoid profanity, politics, mature themes."
|
31 |
)
|
32 |
+
WELCOME = "HiΒ there! Iβm SchoolSpiritΒ AI. How can I help?"
|
33 |
|
34 |
strip = lambda s: re.sub(r"\s+", " ", s.strip())
|
35 |
|
|
|
36 |
hf_logging.set_verbosity_error()
|
37 |
try:
|
|
|
38 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
MODEL_ID,
|
41 |
+
device_map="auto" if torch.cuda.is_available() else "cpu",
|
42 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else "auto",
|
43 |
+
low_cpu_mem_usage=True,
|
44 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
MODEL_ERR = None
|
46 |
+
log("Model loaded")
|
47 |
+
except Exception as e:
|
48 |
+
MODEL_ERR = f"Model load error: {e}"
|
49 |
+
log(MODEL_ERR + "\n" + traceback.format_exc())
|
50 |
|
51 |
+
VISITS = {}
|
52 |
+
def allowed(ip):
|
|
|
53 |
now = time.time()
|
54 |
+
VISITS[ip] = [t for t in VISITS.get(ip, []) if now - t < RATE_T]
|
55 |
if len(VISITS[ip]) >= RATE_N:
|
56 |
return False
|
57 |
VISITS[ip].append(now)
|
58 |
return True
|
59 |
|
60 |
+
def build_prompt(raw):
|
|
|
61 |
def render(m):
|
62 |
if m["role"] == "system":
|
63 |
return m["content"]
|
64 |
+
return f"{'User:' if m['role']=='user' else 'AI:'} {m['content']}"
|
65 |
+
sys, convo = raw[0], raw[1:]
|
|
|
66 |
while True:
|
67 |
+
parts = [sys["content"]] + [render(m) for m in convo] + ["AI:"]
|
68 |
+
if len(tok.encode("\n".join(parts), add_special_tokens=False)) <= CTX_TOK or len(convo) <= 2:
|
69 |
return "\n".join(parts)
|
70 |
+
convo = convo[2:]
|
71 |
|
72 |
+
def chat_fn(user_msg, hist, state, request: gr.Request):
|
|
|
73 |
ip = request.client.host if request else "anon"
|
74 |
if not allowed(ip):
|
75 |
+
hist.append((user_msg, "Rate limit exceeded β please wait a minute."))
|
76 |
+
return hist, state, ""
|
|
|
77 |
user_msg = strip(user_msg or "")
|
78 |
if not user_msg:
|
79 |
+
return hist, state, ""
|
80 |
+
if len(user_msg) > MAX_IN:
|
81 |
+
hist.append((user_msg, f"Input >{MAX_IN} chars."))
|
82 |
+
return hist, state, ""
|
83 |
if MODEL_ERR:
|
84 |
+
hist.append((user_msg, MODEL_ERR))
|
85 |
+
return hist, state, ""
|
86 |
|
87 |
+
hist.append((user_msg, ""))
|
|
|
88 |
state["raw"].append({"role": "user", "content": user_msg})
|
89 |
|
90 |
prompt = build_prompt(state["raw"])
|
91 |
+
ids = tok(prompt, return_tensors="pt").to(model.device).input_ids
|
|
|
92 |
streamer = TextIteratorStreamer(tok, skip_prompt=True, skip_special_tokens=True)
|
93 |
threading.Thread(
|
94 |
target=model.generate,
|
95 |
+
kwargs=dict(input_ids=ids, max_new_tokens=MAX_NEW, temperature=TEMP, streamer=streamer),
|
|
|
|
|
|
|
|
|
|
|
96 |
).start()
|
97 |
|
98 |
partial = ""
|
99 |
+
for piece in streamer:
|
100 |
+
partial += piece
|
101 |
+
if "User:" in partial or "\nAI:" in partial:
|
102 |
+
partial = re.split(r"(?:\n?User:|\n?AI:)", partial)[0].strip()
|
103 |
+
break
|
104 |
+
hist[-1] = (user_msg, partial)
|
105 |
+
yield hist, state, ""
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
reply = strip(partial)
|
108 |
+
hist[-1] = (user_msg, reply)
|
109 |
state["raw"].append({"role": "assistant", "content": reply})
|
110 |
+
yield hist, state, ""
|
111 |
|
|
|
112 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
113 |
gr.Markdown("### SchoolSpiritΒ AI Chat")
|
114 |
+
bot = gr.Chatbot(value=[("", WELCOME)], height=480)
|
115 |
+
st = gr.State({
|
116 |
"raw": [
|
117 |
{"role": "system", "content": SYSTEM_MSG},
|
118 |
{"role": "assistant", "content": WELCOME},
|
|
|
120 |
})
|
121 |
with gr.Row():
|
122 |
txt = gr.Textbox(placeholder="Type your question hereβ¦", show_label=False, lines=1, scale=4)
|
123 |
+
send = gr.Button("Send", variant="primary")
|
124 |
+
send.click(chat_fn, inputs=[txt, bot, st], outputs=[bot, st, txt])
|
125 |
+
txt.submit(chat_fn, inputs=[txt, bot, st], outputs=[bot, st, txt])
|
126 |
|
127 |
demo.launch()
|