Spaces:
Sleeping
Sleeping
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
# International Conference on Computer Vision (ICCV), 2023 | |
from efficientvit.models.efficientvit import ( | |
EfficientViTCls, | |
efficientvit_cls_b0, | |
efficientvit_cls_b1, | |
efficientvit_cls_b2, | |
efficientvit_cls_b3, | |
efficientvit_cls_l1, | |
efficientvit_cls_l2, | |
efficientvit_cls_l3, | |
) | |
from efficientvit.models.nn.norm import set_norm_eps | |
from efficientvit.models.utils import load_state_dict_from_file | |
__all__ = ["create_cls_model"] | |
REGISTERED_CLS_MODEL: dict[str, str] = { | |
"b0-r224": "assets/checkpoints/cls/b0-r224.pt", | |
############################################### | |
"b1-r224": "assets/checkpoints/cls/b1-r224.pt", | |
"b1-r256": "assets/checkpoints/cls/b1-r256.pt", | |
"b1-r288": "assets/checkpoints/cls/b1-r288.pt", | |
############################################### | |
"b2-r224": "assets/checkpoints/cls/b2-r224.pt", | |
"b2-r256": "assets/checkpoints/cls/b2-r256.pt", | |
"b2-r288": "assets/checkpoints/cls/b2-r288.pt", | |
############################################### | |
"b3-r224": "assets/checkpoints/cls/b3-r224.pt", | |
"b3-r256": "assets/checkpoints/cls/b3-r256.pt", | |
"b3-r288": "assets/checkpoints/cls/b3-r288.pt", | |
############################################### | |
"l1-r224": "assets/checkpoints/cls/l1-r224.pt", | |
############################################### | |
"l2-r224": "assets/checkpoints/cls/l2-r224.pt", | |
"l2-r256": "assets/checkpoints/cls/l2-r256.pt", | |
"l2-r288": "assets/checkpoints/cls/l2-r288.pt", | |
"l2-r320": "assets/checkpoints/cls/l2-r320.pt", | |
"l2-r384": "assets/checkpoints/cls/l2-r384.pt", | |
############################################### | |
"l3-r224": "assets/checkpoints/cls/l3-r224.pt", | |
"l3-r256": "assets/checkpoints/cls/l3-r256.pt", | |
"l3-r288": "assets/checkpoints/cls/l3-r288.pt", | |
"l3-r320": "assets/checkpoints/cls/l3-r320.pt", | |
"l3-r384": "assets/checkpoints/cls/l3-r384.pt", | |
} | |
def create_cls_model(name: str, pretrained=True, weight_url: str or None = None, **kwargs) -> EfficientViTCls: | |
model_dict = { | |
"b0": efficientvit_cls_b0, | |
"b1": efficientvit_cls_b1, | |
"b2": efficientvit_cls_b2, | |
"b3": efficientvit_cls_b3, | |
######################### | |
"l1": efficientvit_cls_l1, | |
"l2": efficientvit_cls_l2, | |
"l3": efficientvit_cls_l3, | |
} | |
model_id = name.split("-")[0] | |
if model_id not in model_dict: | |
raise ValueError(f"Do not find {name} in the model zoo. List of models: {list(model_dict.keys())}") | |
else: | |
model = model_dict[model_id](**kwargs) | |
if model_id in ["l1", "l2", "l3"]: | |
set_norm_eps(model, 1e-7) | |
if pretrained: | |
weight_url = weight_url or REGISTERED_CLS_MODEL.get(name, None) | |
if weight_url is None: | |
raise ValueError(f"Do not find the pretrained weight of {name}.") | |
else: | |
weight = load_state_dict_from_file(weight_url) | |
model.load_state_dict(weight) | |
return model | |