Kikirilkov commited on
Commit
0dc5add
1 Parent(s): 2027d9d

Delete TTS/vocoder/models/fatchord_version.py

Browse files
TTS/vocoder/models/fatchord_version.py DELETED
@@ -1,434 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from vocoder.distribution import sample_from_discretized_mix_logistic
5
- from vocoder.display import *
6
- from vocoder.audio import *
7
-
8
-
9
- class ResBlock(nn.Module):
10
- def __init__(self, dims):
11
- super().__init__()
12
- self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
13
- self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
14
- self.batch_norm1 = nn.BatchNorm1d(dims)
15
- self.batch_norm2 = nn.BatchNorm1d(dims)
16
-
17
- def forward(self, x):
18
- residual = x
19
- x = self.conv1(x)
20
- x = self.batch_norm1(x)
21
- x = F.relu(x)
22
- x = self.conv2(x)
23
- x = self.batch_norm2(x)
24
- return x + residual
25
-
26
-
27
- class MelResNet(nn.Module):
28
- def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
29
- super().__init__()
30
- k_size = pad * 2 + 1
31
- self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
32
- self.batch_norm = nn.BatchNorm1d(compute_dims)
33
- self.layers = nn.ModuleList()
34
- for i in range(res_blocks):
35
- self.layers.append(ResBlock(compute_dims))
36
- self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
37
-
38
- def forward(self, x):
39
- x = self.conv_in(x)
40
- x = self.batch_norm(x)
41
- x = F.relu(x)
42
- for f in self.layers: x = f(x)
43
- x = self.conv_out(x)
44
- return x
45
-
46
-
47
- class Stretch2d(nn.Module):
48
- def __init__(self, x_scale, y_scale):
49
- super().__init__()
50
- self.x_scale = x_scale
51
- self.y_scale = y_scale
52
-
53
- def forward(self, x):
54
- b, c, h, w = x.size()
55
- x = x.unsqueeze(-1).unsqueeze(3)
56
- x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
57
- return x.view(b, c, h * self.y_scale, w * self.x_scale)
58
-
59
-
60
- class UpsampleNetwork(nn.Module):
61
- def __init__(self, feat_dims, upsample_scales, compute_dims,
62
- res_blocks, res_out_dims, pad):
63
- super().__init__()
64
- total_scale = np.cumproduct(upsample_scales)[-1]
65
- self.indent = pad * total_scale
66
- self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
67
- self.resnet_stretch = Stretch2d(total_scale, 1)
68
- self.up_layers = nn.ModuleList()
69
- for scale in upsample_scales:
70
- k_size = (1, scale * 2 + 1)
71
- padding = (0, scale)
72
- stretch = Stretch2d(scale, 1)
73
- conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
74
- conv.weight.data.fill_(1. / k_size[1])
75
- self.up_layers.append(stretch)
76
- self.up_layers.append(conv)
77
-
78
- def forward(self, m):
79
- aux = self.resnet(m).unsqueeze(1)
80
- aux = self.resnet_stretch(aux)
81
- aux = aux.squeeze(1)
82
- m = m.unsqueeze(1)
83
- for f in self.up_layers: m = f(m)
84
- m = m.squeeze(1)[:, :, self.indent:-self.indent]
85
- return m.transpose(1, 2), aux.transpose(1, 2)
86
-
87
-
88
- class WaveRNN(nn.Module):
89
- def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors,
90
- feat_dims, compute_dims, res_out_dims, res_blocks,
91
- hop_length, sample_rate, mode='RAW'):
92
- super().__init__()
93
- self.mode = mode
94
- self.pad = pad
95
- if self.mode == 'RAW' :
96
- self.n_classes = 2 ** bits
97
- elif self.mode == 'MOL' :
98
- self.n_classes = 30
99
- else :
100
- RuntimeError("Unknown model mode value - ", self.mode)
101
-
102
- self.rnn_dims = rnn_dims
103
- self.aux_dims = res_out_dims // 4
104
- self.hop_length = hop_length
105
- self.sample_rate = sample_rate
106
-
107
- self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad)
108
- self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims)
109
- self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
110
- self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True)
111
- self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
112
- self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
113
- self.fc3 = nn.Linear(fc_dims, self.n_classes)
114
-
115
- self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False)
116
- self.num_params()
117
-
118
- def forward(self, x, mels):
119
- self.step += 1
120
- bsize = x.size(0)
121
- if torch.cuda.is_available():
122
- h1 = torch.zeros(1, bsize, self.rnn_dims).cuda()
123
- h2 = torch.zeros(1, bsize, self.rnn_dims).cuda()
124
- else:
125
- h1 = torch.zeros(1, bsize, self.rnn_dims).cpu()
126
- h2 = torch.zeros(1, bsize, self.rnn_dims).cpu()
127
- mels, aux = self.upsample(mels)
128
-
129
- aux_idx = [self.aux_dims * i for i in range(5)]
130
- a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
131
- a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
132
- a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
133
- a4 = aux[:, :, aux_idx[3]:aux_idx[4]]
134
-
135
- x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
136
- x = self.I(x)
137
- res = x
138
- x, _ = self.rnn1(x, h1)
139
-
140
- x = x + res
141
- res = x
142
- x = torch.cat([x, a2], dim=2)
143
- x, _ = self.rnn2(x, h2)
144
-
145
- x = x + res
146
- x = torch.cat([x, a3], dim=2)
147
- x = F.relu(self.fc1(x))
148
-
149
- x = torch.cat([x, a4], dim=2)
150
- x = F.relu(self.fc2(x))
151
- return self.fc3(x)
152
-
153
- def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None):
154
- mu_law = mu_law if self.mode == 'RAW' else False
155
- progress_callback = progress_callback or self.gen_display
156
-
157
- self.eval()
158
- output = []
159
- start = time.time()
160
- rnn1 = self.get_gru_cell(self.rnn1)
161
- rnn2 = self.get_gru_cell(self.rnn2)
162
-
163
- with torch.no_grad():
164
- if torch.cuda.is_available():
165
- mels = mels.cuda()
166
- else:
167
- mels = mels.cpu()
168
- wave_len = (mels.size(-1) - 1) * self.hop_length
169
- mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both')
170
- mels, aux = self.upsample(mels.transpose(1, 2))
171
-
172
- if batched:
173
- mels = self.fold_with_overlap(mels, target, overlap)
174
- aux = self.fold_with_overlap(aux, target, overlap)
175
-
176
- b_size, seq_len, _ = mels.size()
177
-
178
- if torch.cuda.is_available():
179
- h1 = torch.zeros(b_size, self.rnn_dims).cuda()
180
- h2 = torch.zeros(b_size, self.rnn_dims).cuda()
181
- x = torch.zeros(b_size, 1).cuda()
182
- else:
183
- h1 = torch.zeros(b_size, self.rnn_dims).cpu()
184
- h2 = torch.zeros(b_size, self.rnn_dims).cpu()
185
- x = torch.zeros(b_size, 1).cpu()
186
-
187
- d = self.aux_dims
188
- aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]
189
-
190
- for i in range(seq_len):
191
-
192
- m_t = mels[:, i, :]
193
-
194
- a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
195
-
196
- x = torch.cat([x, m_t, a1_t], dim=1)
197
- x = self.I(x)
198
- h1 = rnn1(x, h1)
199
-
200
- x = x + h1
201
- inp = torch.cat([x, a2_t], dim=1)
202
- h2 = rnn2(inp, h2)
203
-
204
- x = x + h2
205
- x = torch.cat([x, a3_t], dim=1)
206
- x = F.relu(self.fc1(x))
207
-
208
- x = torch.cat([x, a4_t], dim=1)
209
- x = F.relu(self.fc2(x))
210
-
211
- logits = self.fc3(x)
212
-
213
- if self.mode == 'MOL':
214
- sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
215
- output.append(sample.view(-1))
216
- if torch.cuda.is_available():
217
- # x = torch.FloatTensor([[sample]]).cuda()
218
- x = sample.transpose(0, 1).cuda()
219
- else:
220
- x = sample.transpose(0, 1)
221
-
222
- elif self.mode == 'RAW' :
223
- posterior = F.softmax(logits, dim=1)
224
- distrib = torch.distributions.Categorical(posterior)
225
-
226
- sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1.
227
- output.append(sample)
228
- x = sample.unsqueeze(-1)
229
- else:
230
- raise RuntimeError("Unknown model mode value - ", self.mode)
231
-
232
- if i % 100 == 0:
233
- gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
234
- progress_callback(i, seq_len, b_size, gen_rate)
235
-
236
- output = torch.stack(output).transpose(0, 1)
237
- output = output.cpu().numpy()
238
- output = output.astype(np.float64)
239
-
240
- if batched:
241
- output = self.xfade_and_unfold(output, target, overlap)
242
- else:
243
- output = output[0]
244
-
245
- if mu_law:
246
- output = decode_mu_law(output, self.n_classes, False)
247
- if hp.apply_preemphasis:
248
- output = de_emphasis(output)
249
-
250
- # Fade-out at the end to avoid signal cutting out suddenly
251
- fade_out = np.linspace(1, 0, 20 * self.hop_length)
252
- output = output[:wave_len]
253
- output[-20 * self.hop_length:] *= fade_out
254
-
255
- self.train()
256
-
257
- return output
258
-
259
-
260
- def gen_display(self, i, seq_len, b_size, gen_rate):
261
- pbar = progbar(i, seq_len)
262
- msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
263
- stream(msg)
264
-
265
- def get_gru_cell(self, gru):
266
- gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
267
- gru_cell.weight_hh.data = gru.weight_hh_l0.data
268
- gru_cell.weight_ih.data = gru.weight_ih_l0.data
269
- gru_cell.bias_hh.data = gru.bias_hh_l0.data
270
- gru_cell.bias_ih.data = gru.bias_ih_l0.data
271
- return gru_cell
272
-
273
- def pad_tensor(self, x, pad, side='both'):
274
- # NB - this is just a quick method i need right now
275
- # i.e., it won't generalise to other shapes/dims
276
- b, t, c = x.size()
277
- total = t + 2 * pad if side == 'both' else t + pad
278
- if torch.cuda.is_available():
279
- padded = torch.zeros(b, total, c).cuda()
280
- else:
281
- padded = torch.zeros(b, total, c).cpu()
282
- if side == 'before' or side == 'both':
283
- padded[:, pad:pad + t, :] = x
284
- elif side == 'after':
285
- padded[:, :t, :] = x
286
- return padded
287
-
288
- def fold_with_overlap(self, x, target, overlap):
289
-
290
- ''' Fold the tensor with overlap for quick batched inference.
291
- Overlap will be used for crossfading in xfade_and_unfold()
292
-
293
- Args:
294
- x (tensor) : Upsampled conditioning features.
295
- shape=(1, timesteps, features)
296
- target (int) : Target timesteps for each index of batch
297
- overlap (int) : Timesteps for both xfade and rnn warmup
298
-
299
- Return:
300
- (tensor) : shape=(num_folds, target + 2 * overlap, features)
301
-
302
- Details:
303
- x = [[h1, h2, ... hn]]
304
-
305
- Where each h is a vector of conditioning features
306
-
307
- Eg: target=2, overlap=1 with x.size(1)=10
308
-
309
- folded = [[h1, h2, h3, h4],
310
- [h4, h5, h6, h7],
311
- [h7, h8, h9, h10]]
312
- '''
313
-
314
- _, total_len, features = x.size()
315
-
316
- # Calculate variables needed
317
- num_folds = (total_len - overlap) // (target + overlap)
318
- extended_len = num_folds * (overlap + target) + overlap
319
- remaining = total_len - extended_len
320
-
321
- # Pad if some time steps poking out
322
- if remaining != 0:
323
- num_folds += 1
324
- padding = target + 2 * overlap - remaining
325
- x = self.pad_tensor(x, padding, side='after')
326
-
327
- if torch.cuda.is_available():
328
- folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda()
329
- else:
330
- folded = torch.zeros(num_folds, target + 2 * overlap, features).cpu()
331
-
332
- # Get the values for the folded tensor
333
- for i in range(num_folds):
334
- start = i * (target + overlap)
335
- end = start + target + 2 * overlap
336
- folded[i] = x[:, start:end, :]
337
-
338
- return folded
339
-
340
- def xfade_and_unfold(self, y, target, overlap):
341
-
342
- ''' Applies a crossfade and unfolds into a 1d array.
343
-
344
- Args:
345
- y (ndarry) : Batched sequences of audio samples
346
- shape=(num_folds, target + 2 * overlap)
347
- dtype=np.float64
348
- overlap (int) : Timesteps for both xfade and rnn warmup
349
-
350
- Return:
351
- (ndarry) : audio samples in a 1d array
352
- shape=(total_len)
353
- dtype=np.float64
354
-
355
- Details:
356
- y = [[seq1],
357
- [seq2],
358
- [seq3]]
359
-
360
- Apply a gain envelope at both ends of the sequences
361
-
362
- y = [[seq1_in, seq1_target, seq1_out],
363
- [seq2_in, seq2_target, seq2_out],
364
- [seq3_in, seq3_target, seq3_out]]
365
-
366
- Stagger and add up the groups of samples:
367
-
368
- [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
369
-
370
- '''
371
-
372
- num_folds, length = y.shape
373
- target = length - 2 * overlap
374
- total_len = num_folds * (target + overlap) + overlap
375
-
376
- # Need some silence for the rnn warmup
377
- silence_len = overlap // 2
378
- fade_len = overlap - silence_len
379
- silence = np.zeros((silence_len), dtype=np.float64)
380
-
381
- # Equal power crossfade
382
- t = np.linspace(-1, 1, fade_len, dtype=np.float64)
383
- fade_in = np.sqrt(0.5 * (1 + t))
384
- fade_out = np.sqrt(0.5 * (1 - t))
385
-
386
- # Concat the silence to the fades
387
- fade_in = np.concatenate([silence, fade_in])
388
- fade_out = np.concatenate([fade_out, silence])
389
-
390
- # Apply the gain to the overlap samples
391
- y[:, :overlap] *= fade_in
392
- y[:, -overlap:] *= fade_out
393
-
394
- unfolded = np.zeros((total_len), dtype=np.float64)
395
-
396
- # Loop to add up all the samples
397
- for i in range(num_folds):
398
- start = i * (target + overlap)
399
- end = start + target + 2 * overlap
400
- unfolded[start:end] += y[i]
401
-
402
- return unfolded
403
-
404
- def get_step(self) :
405
- return self.step.data.item()
406
-
407
- def checkpoint(self, model_dir, optimizer) :
408
- k_steps = self.get_step() // 1000
409
- self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer)
410
-
411
- def log(self, path, msg) :
412
- with open(path, 'a') as f:
413
- print(msg, file=f)
414
-
415
- def load(self, path, optimizer) :
416
- checkpoint = torch.load(path)
417
- if "optimizer_state" in checkpoint:
418
- self.load_state_dict(checkpoint["model_state"])
419
- optimizer.load_state_dict(checkpoint["optimizer_state"])
420
- else:
421
- # Backwards compatibility
422
- self.load_state_dict(checkpoint)
423
-
424
- def save(self, path, optimizer) :
425
- torch.save({
426
- "model_state": self.state_dict(),
427
- "optimizer_state": optimizer.state_dict(),
428
- }, path)
429
-
430
- def num_params(self, print_out=True):
431
- parameters = filter(lambda p: p.requires_grad, self.parameters())
432
- parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
433
- if print_out :
434
- print('Trainable Parameters: %.3fM' % parameters)