|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.nn.modules.loss import _Loss |
|
|
|
|
|
def _reduce(x: torch.Tensor, reduction: str = "mean") -> torch.Tensor: |
|
r"""Reduce input in batch dimension if needed. |
|
Args: |
|
x: Tensor with shape (N, *). |
|
reduction: Specifies the reduction type: |
|
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'`` |
|
""" |
|
if reduction == "none": |
|
return x |
|
if reduction == "mean": |
|
return x.mean(dim=0) |
|
if reduction == "sum": |
|
return x.sum(dim=0) |
|
raise ValueError("Unknown reduction. Expected one of {'none', 'mean', 'sum'}") |
|
|
|
|
|
def _validate_input( |
|
tensors: List[torch.Tensor], |
|
dim_range: Tuple[int, int] = (0, -1), |
|
data_range: Tuple[float, float] = (0.0, -1.0), |
|
|
|
size_range: Optional[Tuple[int, int]] = None, |
|
) -> None: |
|
r"""Check that input(-s) satisfies the requirements |
|
Args: |
|
tensors: Tensors to check |
|
dim_range: Allowed number of dimensions. (min, max) |
|
data_range: Allowed range of values in tensors. (min, max) |
|
size_range: Dimensions to include in size comparison. (start_dim, end_dim + 1) |
|
""" |
|
|
|
if not __debug__: |
|
return |
|
|
|
x = tensors[0] |
|
|
|
for t in tensors: |
|
assert torch.is_tensor(t), f"Expected torch.Tensor, got {type(t)}" |
|
assert t.device == x.device, f"Expected tensors to be on {x.device}, got {t.device}" |
|
|
|
if size_range is None: |
|
assert t.size() == x.size(), f"Expected tensors with same size, got {t.size()} and {x.size()}" |
|
else: |
|
assert ( |
|
t.size()[size_range[0] : size_range[1]] == x.size()[size_range[0] : size_range[1]] |
|
), f"Expected tensors with same size at given dimensions, got {t.size()} and {x.size()}" |
|
|
|
if dim_range[0] == dim_range[1]: |
|
assert t.dim() == dim_range[0], f"Expected number of dimensions to be {dim_range[0]}, got {t.dim()}" |
|
elif dim_range[0] < dim_range[1]: |
|
assert ( |
|
dim_range[0] <= t.dim() <= dim_range[1] |
|
), f"Expected number of dimensions to be between {dim_range[0]} and {dim_range[1]}, got {t.dim()}" |
|
|
|
if data_range[0] < data_range[1]: |
|
assert data_range[0] <= t.min(), f"Expected values to be greater or equal to {data_range[0]}, got {t.min()}" |
|
assert t.max() <= data_range[1], f"Expected values to be lower or equal to {data_range[1]}, got {t.max()}" |
|
|
|
|
|
def gaussian_filter(kernel_size: int, sigma: float) -> torch.Tensor: |
|
r"""Returns 2D Gaussian kernel N(0,`sigma`^2) |
|
Args: |
|
size: Size of the kernel |
|
sigma: Std of the distribution |
|
Returns: |
|
gaussian_kernel: Tensor with shape (1, kernel_size, kernel_size) |
|
""" |
|
coords = torch.arange(kernel_size, dtype=torch.float32) |
|
coords -= (kernel_size - 1) / 2.0 |
|
|
|
g = coords**2 |
|
g = (-(g.unsqueeze(0) + g.unsqueeze(1)) / (2 * sigma**2)).exp() |
|
|
|
g /= g.sum() |
|
return g.unsqueeze(0) |
|
|
|
|
|
def ssim( |
|
x: torch.Tensor, |
|
y: torch.Tensor, |
|
kernel_size: int = 11, |
|
kernel_sigma: float = 1.5, |
|
data_range: Union[int, float] = 1.0, |
|
reduction: str = "mean", |
|
full: bool = False, |
|
downsample: bool = True, |
|
k1: float = 0.01, |
|
k2: float = 0.03, |
|
) -> List[torch.Tensor]: |
|
r"""Interface of Structural Similarity (SSIM) index. |
|
Inputs supposed to be in range ``[0, data_range]``. |
|
To match performance with skimage and tensorflow set ``'downsample' = True``. |
|
|
|
Args: |
|
x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. |
|
y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. |
|
kernel_size: The side-length of the sliding window used in comparison. Must be an odd value. |
|
kernel_sigma: Sigma of normal distribution. |
|
data_range: Maximum value range of images (usually 1.0 or 255). |
|
reduction: Specifies the reduction type: |
|
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'`` |
|
full: Return cs map or not. |
|
downsample: Perform average pool before SSIM computation. Default: True |
|
k1: Algorithm parameter, K1 (small constant). |
|
k2: Algorithm parameter, K2 (small constant). |
|
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. |
|
|
|
Returns: |
|
Value of Structural Similarity (SSIM) index. In case of 5D input tensors, complex value is returned |
|
as a tensor of size 2. |
|
|
|
References: |
|
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). |
|
Image quality assessment: From error visibility to structural similarity. |
|
IEEE Transactions on Image Processing, 13, 600-612. |
|
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, |
|
DOI: `10.1109/TIP.2003.819861` |
|
""" |
|
assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]" |
|
_validate_input([x, y], dim_range=(4, 5), data_range=(0, data_range)) |
|
|
|
x = x / float(data_range) |
|
y = y / float(data_range) |
|
|
|
|
|
f = max(1, round(min(x.size()[-2:]) / 256)) |
|
if (f > 1) and downsample: |
|
x = F.avg_pool2d(x, kernel_size=f) |
|
y = F.avg_pool2d(y, kernel_size=f) |
|
|
|
kernel = gaussian_filter(kernel_size, kernel_sigma).repeat(x.size(1), 1, 1, 1).to(y) |
|
_compute_ssim_per_channel = _ssim_per_channel_complex if x.dim() == 5 else _ssim_per_channel |
|
ssim_map, cs_map = _compute_ssim_per_channel(x=x, y=y, kernel=kernel, k1=k1, k2=k2) |
|
ssim_val = ssim_map.mean(1) |
|
cs = cs_map.mean(1) |
|
|
|
ssim_val = _reduce(ssim_val, reduction) |
|
cs = _reduce(cs, reduction) |
|
|
|
if full: |
|
return [ssim_val, cs] |
|
|
|
return ssim_val |
|
|
|
|
|
class SSIMLoss(_Loss): |
|
r"""Creates a criterion that measures the structural similarity index error between |
|
each element in the input :math:`x` and target :math:`y`. |
|
|
|
To match performance with skimage and tensorflow set ``'downsample' = True``. |
|
|
|
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: |
|
|
|
.. math:: |
|
SSIM = \{ssim_1,\dots,ssim_{N \times C}\}\\ |
|
ssim_{l}(x, y) = \frac{(2 \mu_x \mu_y + c_1) (2 \sigma_{xy} + c_2)} |
|
{(\mu_x^2 +\mu_y^2 + c_1)(\sigma_x^2 +\sigma_y^2 + c_2)}, |
|
|
|
where :math:`N` is the batch size, `C` is the channel size. If :attr:`reduction` is not ``'none'`` |
|
(default ``'mean'``), then: |
|
|
|
.. math:: |
|
SSIMLoss(x, y) = |
|
\begin{cases} |
|
\operatorname{mean}(1 - SSIM), & \text{if reduction} = \text{'mean';}\\ |
|
\operatorname{sum}(1 - SSIM), & \text{if reduction} = \text{'sum'.} |
|
\end{cases} |
|
|
|
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total |
|
of :math:`n` elements each. |
|
|
|
The sum operation still operates over all the elements, and divides by :math:`n`. |
|
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``. |
|
In case of 5D input tensors, complex value is returned as a tensor of size 2. |
|
|
|
Args: |
|
kernel_size: By default, the mean and covariance of a pixel is obtained |
|
by convolution with given filter_size. |
|
kernel_sigma: Standard deviation for Gaussian kernel. |
|
k1: Coefficient related to c1 in the above equation. |
|
k2: Coefficient related to c2 in the above equation. |
|
downsample: Perform average pool before SSIM computation. Default: True |
|
reduction: Specifies the reduction type: |
|
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'`` |
|
data_range: Maximum value range of images (usually 1.0 or 255). |
|
|
|
Examples: |
|
>>> loss = SSIMLoss() |
|
>>> x = torch.rand(3, 3, 256, 256, requires_grad=True) |
|
>>> y = torch.rand(3, 3, 256, 256) |
|
>>> output = loss(x, y) |
|
>>> output.backward() |
|
|
|
References: |
|
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). |
|
Image quality assessment: From error visibility to structural similarity. |
|
IEEE Transactions on Image Processing, 13, 600-612. |
|
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, |
|
DOI:`10.1109/TIP.2003.819861` |
|
""" |
|
__constants__ = ["kernel_size", "k1", "k2", "sigma", "kernel", "reduction"] |
|
|
|
def __init__( |
|
self, |
|
kernel_size: int = 11, |
|
kernel_sigma: float = 1.5, |
|
k1: float = 0.01, |
|
k2: float = 0.03, |
|
downsample: bool = True, |
|
reduction: str = "mean", |
|
data_range: Union[int, float] = 1.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.reduction = reduction |
|
|
|
|
|
self.kernel_size = kernel_size |
|
|
|
|
|
|
|
assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]" |
|
self.kernel_sigma = kernel_sigma |
|
self.k1 = k1 |
|
self.k2 = k2 |
|
self.downsample = downsample |
|
self.data_range = data_range |
|
|
|
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
r"""Computation of Structural Similarity (SSIM) index as a loss function. |
|
|
|
Args: |
|
x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. |
|
y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. |
|
|
|
Returns: |
|
Value of SSIM loss to be minimized, i.e ``1 - ssim`` in [0, 1] range. In case of 5D input tensors, |
|
complex value is returned as a tensor of size 2. |
|
""" |
|
|
|
score = ssim( |
|
x=x, |
|
y=y, |
|
kernel_size=self.kernel_size, |
|
kernel_sigma=self.kernel_sigma, |
|
downsample=self.downsample, |
|
data_range=self.data_range, |
|
reduction=self.reduction, |
|
full=False, |
|
k1=self.k1, |
|
k2=self.k2, |
|
) |
|
return torch.ones_like(score) - score |
|
|
|
|
|
def _ssim_per_channel( |
|
x: torch.Tensor, |
|
y: torch.Tensor, |
|
kernel: torch.Tensor, |
|
k1: float = 0.01, |
|
k2: float = 0.03, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
r"""Calculate Structural Similarity (SSIM) index for X and Y per channel. |
|
|
|
Args: |
|
x: An input tensor. Shape :math:`(N, C, H, W)`. |
|
y: A target tensor. Shape :math:`(N, C, H, W)`. |
|
kernel: 2D Gaussian kernel. |
|
k1: Algorithm parameter, K1 (small constant, see [1]). |
|
k2: Algorithm parameter, K2 (small constant, see [1]). |
|
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. |
|
|
|
Returns: |
|
Full Value of Structural Similarity (SSIM) index. |
|
""" |
|
if x.size(-1) < kernel.size(-1) or x.size(-2) < kernel.size(-2): |
|
raise ValueError( |
|
f"Kernel size can't be greater than actual input size. Input size: {x.size()}. " |
|
f"Kernel size: {kernel.size()}" |
|
) |
|
|
|
c1 = k1**2 |
|
c2 = k2**2 |
|
n_channels = x.size(1) |
|
mu_x = F.conv2d(x, weight=kernel, stride=1, padding=0, groups=n_channels) |
|
mu_y = F.conv2d(y, weight=kernel, stride=1, padding=0, groups=n_channels) |
|
|
|
mu_xx = mu_x**2 |
|
mu_yy = mu_y**2 |
|
mu_xy = mu_x * mu_y |
|
|
|
sigma_xx = F.conv2d(x**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xx |
|
sigma_yy = F.conv2d(y**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_yy |
|
sigma_xy = F.conv2d(x * y, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xy |
|
|
|
|
|
cs = (2.0 * sigma_xy + c2) / (sigma_xx + sigma_yy + c2) |
|
|
|
|
|
ss = (2.0 * mu_xy + c1) / (mu_xx + mu_yy + c1) * cs |
|
|
|
ssim_val = ss.mean(dim=(-1, -2)) |
|
cs = cs.mean(dim=(-1, -2)) |
|
return ssim_val, cs |
|
|
|
|
|
def _ssim_per_channel_complex( |
|
x: torch.Tensor, |
|
y: torch.Tensor, |
|
kernel: torch.Tensor, |
|
k1: float = 0.01, |
|
k2: float = 0.03, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
r"""Calculate Structural Similarity (SSIM) index for Complex X and Y per channel. |
|
|
|
Args: |
|
x: An input tensor. Shape :math:`(N, C, H, W, 2)`. |
|
y: A target tensor. Shape :math:`(N, C, H, W, 2)`. |
|
kernel: 2-D gauss kernel. |
|
k1: Algorithm parameter, K1 (small constant, see [1]). |
|
k2: Algorithm parameter, K2 (small constant, see [1]). |
|
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. |
|
|
|
Returns: |
|
Full Value of Complex Structural Similarity (SSIM) index. |
|
""" |
|
n_channels = x.size(1) |
|
if x.size(-2) < kernel.size(-1) or x.size(-3) < kernel.size(-2): |
|
raise ValueError( |
|
f"Kernel size can't be greater than actual input size. Input size: {x.size()}. " |
|
f"Kernel size: {kernel.size()}" |
|
) |
|
|
|
c1 = k1**2 |
|
c2 = k2**2 |
|
|
|
x_real = x[..., 0] |
|
x_imag = x[..., 1] |
|
y_real = y[..., 0] |
|
y_imag = y[..., 1] |
|
|
|
mu1_real = F.conv2d(x_real, weight=kernel, stride=1, padding=0, groups=n_channels) |
|
mu1_imag = F.conv2d(x_imag, weight=kernel, stride=1, padding=0, groups=n_channels) |
|
mu2_real = F.conv2d(y_real, weight=kernel, stride=1, padding=0, groups=n_channels) |
|
mu2_imag = F.conv2d(y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) |
|
|
|
mu1_sq = mu1_real.pow(2) + mu1_imag.pow(2) |
|
mu2_sq = mu2_real.pow(2) + mu2_imag.pow(2) |
|
mu1_mu2_real = mu1_real * mu2_real - mu1_imag * mu2_imag |
|
mu1_mu2_imag = mu1_real * mu2_imag + mu1_imag * mu2_real |
|
|
|
compensation = 1.0 |
|
|
|
x_sq = x_real.pow(2) + x_imag.pow(2) |
|
y_sq = y_real.pow(2) + y_imag.pow(2) |
|
x_y_real = x_real * y_real - x_imag * y_imag |
|
x_y_imag = x_real * y_imag + x_imag * y_real |
|
|
|
sigma1_sq = F.conv2d(x_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_sq |
|
sigma2_sq = F.conv2d(y_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu2_sq |
|
sigma12_real = F.conv2d(x_y_real, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_real |
|
sigma12_imag = F.conv2d(x_y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_imag |
|
sigma12 = torch.stack((sigma12_imag, sigma12_real), dim=-1) |
|
mu1_mu2 = torch.stack((mu1_mu2_real, mu1_mu2_imag), dim=-1) |
|
|
|
cs_map = (sigma12 * 2 + c2 * compensation) / (sigma1_sq.unsqueeze(-1) + sigma2_sq.unsqueeze(-1) + c2 * compensation) |
|
ssim_map = (mu1_mu2 * 2 + c1 * compensation) / (mu1_sq.unsqueeze(-1) + mu2_sq.unsqueeze(-1) + c1 * compensation) |
|
ssim_map = ssim_map * cs_map |
|
|
|
ssim_val = ssim_map.mean(dim=(-2, -3)) |
|
cs = cs_map.mean(dim=(-2, -3)) |
|
|
|
return ssim_val, cs |
|
|