|
from dataclasses import dataclass, field |
|
from typing import List |
|
|
|
from TTS.tts.configs.shared_configs import BaseTTSConfig |
|
|
|
|
|
@dataclass |
|
class GlowTTSConfig(BaseTTSConfig): |
|
"""Defines parameters for GlowTTS model. |
|
|
|
Example: |
|
|
|
>>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig |
|
>>> config = GlowTTSConfig() |
|
|
|
Args: |
|
model(str): |
|
Model name used for selecting the right model at initialization. Defaults to `glow_tts`. |
|
encoder_type (str): |
|
Type of the encoder used by the model. Look at `TTS.tts.layers.glow_tts.encoder` for more details. |
|
Defaults to `rel_pos_transformers`. |
|
encoder_params (dict): |
|
Parameters used to define the encoder network. Look at `TTS.tts.layers.glow_tts.encoder` for more details. |
|
Defaults to `{"kernel_size": 3, "dropout_p": 0.1, "num_layers": 6, "num_heads": 2, "hidden_channels_ffn": 768}` |
|
use_encoder_prenet (bool): |
|
enable / disable the use of a prenet for the encoder. Defaults to True. |
|
hidden_channels_enc (int): |
|
Number of base hidden channels used by the encoder network. It defines the input and the output channel sizes, |
|
and for some encoder types internal hidden channels sizes too. Defaults to 192. |
|
hidden_channels_dec (int): |
|
Number of base hidden channels used by the decoder WaveNet network. Defaults to 192 as in the original work. |
|
hidden_channels_dp (int): |
|
Number of layer channels of the duration predictor network. Defaults to 256 as in the original work. |
|
mean_only (bool): |
|
If true predict only the mean values by the decoder flow. Defaults to True. |
|
out_channels (int): |
|
Number of channels of the model output tensor. Defaults to 80. |
|
num_flow_blocks_dec (int): |
|
Number of decoder blocks. Defaults to 12. |
|
inference_noise_scale (float): |
|
Noise scale used at inference. Defaults to 0.33. |
|
kernel_size_dec (int): |
|
Decoder kernel size. Defaults to 5 |
|
dilation_rate (int): |
|
Rate to increase dilation by each layer in a decoder block. Defaults to 1. |
|
num_block_layers (int): |
|
Number of decoder layers in each decoder block. Defaults to 4. |
|
dropout_p_dec (float): |
|
Dropout rate for decoder. Defaults to 0.1. |
|
num_speaker (int): |
|
Number of speaker to define the size of speaker embedding layer. Defaults to 0. |
|
c_in_channels (int): |
|
Number of speaker embedding channels. It is set to 512 if embeddings are learned. Defaults to 0. |
|
num_splits (int): |
|
Number of split levels in inversible conv1x1 operation. Defaults to 4. |
|
num_squeeze (int): |
|
Number of squeeze levels. When squeezing channels increases and time steps reduces by the factor |
|
'num_squeeze'. Defaults to 2. |
|
sigmoid_scale (bool): |
|
enable/disable sigmoid scaling in decoder. Defaults to False. |
|
mean_only (bool): |
|
If True, encoder only computes mean value and uses constant variance for each time step. Defaults to true. |
|
encoder_type (str): |
|
Encoder module type. Possible values are`["rel_pos_transformer", "gated_conv", "residual_conv_bn", "time_depth_separable"]` |
|
Check `TTS.tts.layers.glow_tts.encoder` for more details. Defaults to `rel_pos_transformers` as in the original paper. |
|
encoder_params (dict): |
|
Encoder module parameters. Defaults to None. |
|
d_vector_dim (int): |
|
Channels of external speaker embedding vectors. Defaults to 0. |
|
data_dep_init_steps (int): |
|
Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses |
|
Activation Normalization that pre-computes normalization stats at the beginning and use the same values |
|
for the rest. Defaults to 10. |
|
style_wav_for_test (str): |
|
Path to the wav file used for changing the style of the speech. Defaults to None. |
|
inference_noise_scale (float): |
|
Variance used for sampling the random noise added to the decoder's input at inference. Defaults to 0.0. |
|
length_scale (float): |
|
Multiply the predicted durations with this value to change the speech speed. Defaults to 1. |
|
use_speaker_embedding (bool): |
|
enable / disable using speaker embeddings for multi-speaker models. If set True, the model is |
|
in the multi-speaker mode. Defaults to False. |
|
use_d_vector_file (bool): |
|
enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. |
|
d_vector_file (str): |
|
Path to the file including pre-computed speaker embeddings. Defaults to None. |
|
noam_schedule (bool): |
|
enable / disable the use of Noam LR scheduler. Defaults to False. |
|
warmup_steps (int): |
|
Number of warm-up steps for the Noam scheduler. Defaults 4000. |
|
lr (float): |
|
Initial learning rate. Defaults to `1e-3`. |
|
wd (float): |
|
Weight decay coefficient. Defaults to `1e-7`. |
|
min_seq_len (int): |
|
Minimum input sequence length to be used at training. |
|
max_seq_len (int): |
|
Maximum input sequence length to be used at training. Larger values result in more VRAM usage. |
|
""" |
|
|
|
model: str = "glow_tts" |
|
|
|
|
|
num_chars: int = None |
|
encoder_type: str = "rel_pos_transformer" |
|
encoder_params: dict = field( |
|
default_factory=lambda: { |
|
"kernel_size": 3, |
|
"dropout_p": 0.1, |
|
"num_layers": 6, |
|
"num_heads": 2, |
|
"hidden_channels_ffn": 768, |
|
} |
|
) |
|
use_encoder_prenet: bool = True |
|
hidden_channels_enc: int = 192 |
|
hidden_channels_dec: int = 192 |
|
hidden_channels_dp: int = 256 |
|
dropout_p_dp: float = 0.1 |
|
dropout_p_dec: float = 0.05 |
|
mean_only: bool = True |
|
out_channels: int = 80 |
|
num_flow_blocks_dec: int = 12 |
|
inference_noise_scale: float = 0.33 |
|
kernel_size_dec: int = 5 |
|
dilation_rate: int = 1 |
|
num_block_layers: int = 4 |
|
num_speakers: int = 0 |
|
c_in_channels: int = 0 |
|
num_splits: int = 4 |
|
num_squeeze: int = 2 |
|
sigmoid_scale: bool = False |
|
encoder_type: str = "rel_pos_transformer" |
|
encoder_params: dict = field( |
|
default_factory=lambda: { |
|
"kernel_size": 3, |
|
"dropout_p": 0.1, |
|
"num_layers": 6, |
|
"num_heads": 2, |
|
"hidden_channels_ffn": 768, |
|
"input_length": None, |
|
} |
|
) |
|
d_vector_dim: int = 0 |
|
|
|
|
|
data_dep_init_steps: int = 10 |
|
|
|
|
|
style_wav_for_test: str = None |
|
inference_noise_scale: float = 0.0 |
|
length_scale: float = 1.0 |
|
|
|
|
|
use_speaker_embedding: bool = False |
|
speakers_file: str = None |
|
use_d_vector_file: bool = False |
|
d_vector_file: str = False |
|
|
|
|
|
optimizer: str = "RAdam" |
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) |
|
lr_scheduler: str = "NoamLR" |
|
lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) |
|
grad_clip: float = 5.0 |
|
lr: float = 1e-3 |
|
|
|
|
|
min_seq_len: int = 3 |
|
max_seq_len: int = 500 |
|
r: int = 1 |
|
|
|
|
|
test_sentences: List[str] = field( |
|
default_factory=lambda: [ |
|
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", |
|
"Be a voice, not an echo.", |
|
"I'm sorry Dave. I'm afraid I can't do that.", |
|
"This cake is great. It's so delicious and moist.", |
|
"Prior to November 22, 1963.", |
|
] |
|
) |
|
|