|
import glob |
|
import os |
|
import random |
|
from multiprocessing import Manager |
|
from typing import List, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
|
|
class WaveGradDataset(Dataset): |
|
""" |
|
WaveGrad Dataset searchs for all the wav files under root path |
|
and converts them to acoustic features on the fly and returns |
|
random segments of (audio, feature) couples. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ap, |
|
items, |
|
seq_len, |
|
hop_len, |
|
pad_short, |
|
conv_pad=2, |
|
is_training=True, |
|
return_segments=True, |
|
use_noise_augment=False, |
|
use_cache=False, |
|
verbose=False, |
|
): |
|
super().__init__() |
|
self.ap = ap |
|
self.item_list = items |
|
self.seq_len = seq_len if return_segments else None |
|
self.hop_len = hop_len |
|
self.pad_short = pad_short |
|
self.conv_pad = conv_pad |
|
self.is_training = is_training |
|
self.return_segments = return_segments |
|
self.use_cache = use_cache |
|
self.use_noise_augment = use_noise_augment |
|
self.verbose = verbose |
|
|
|
if return_segments: |
|
assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." |
|
self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) |
|
|
|
|
|
if use_cache: |
|
self.create_feature_cache() |
|
|
|
def create_feature_cache(self): |
|
self.manager = Manager() |
|
self.cache = self.manager.list() |
|
self.cache += [None for _ in range(len(self.item_list))] |
|
|
|
@staticmethod |
|
def find_wav_files(path): |
|
return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) |
|
|
|
def __len__(self): |
|
return len(self.item_list) |
|
|
|
def __getitem__(self, idx): |
|
item = self.load_item(idx) |
|
return item |
|
|
|
def load_test_samples(self, num_samples: int) -> List[Tuple]: |
|
"""Return test samples. |
|
|
|
Args: |
|
num_samples (int): Number of samples to return. |
|
|
|
Returns: |
|
List[Tuple]: melspectorgram and audio. |
|
|
|
Shapes: |
|
- melspectrogram (Tensor): :math:`[C, T]` |
|
- audio (Tensor): :math:`[T_audio]` |
|
""" |
|
samples = [] |
|
return_segments = self.return_segments |
|
self.return_segments = False |
|
for idx in range(num_samples): |
|
mel, audio = self.load_item(idx) |
|
samples.append([mel, audio]) |
|
self.return_segments = return_segments |
|
return samples |
|
|
|
def load_item(self, idx): |
|
"""load (audio, feat) couple""" |
|
|
|
wavpath = self.item_list[idx] |
|
|
|
if self.use_cache and self.cache[idx] is not None: |
|
audio = self.cache[idx] |
|
else: |
|
audio = self.ap.load_wav(wavpath) |
|
|
|
if self.return_segments: |
|
|
|
if audio.shape[-1] < self.seq_len + self.pad_short: |
|
audio = np.pad( |
|
audio, (0, self.seq_len + self.pad_short - len(audio)), mode="constant", constant_values=0.0 |
|
) |
|
assert ( |
|
audio.shape[-1] >= self.seq_len + self.pad_short |
|
), f"{audio.shape[-1]} vs {self.seq_len + self.pad_short}" |
|
|
|
|
|
p = (audio.shape[-1] // self.hop_len + 1) * self.hop_len - audio.shape[-1] |
|
audio = np.pad(audio, (0, p), mode="constant", constant_values=0.0) |
|
|
|
if self.use_cache: |
|
self.cache[idx] = audio |
|
|
|
if self.return_segments: |
|
max_start = len(audio) - self.seq_len |
|
start = random.randint(0, max_start) |
|
end = start + self.seq_len |
|
audio = audio[start:end] |
|
|
|
if self.use_noise_augment and self.is_training and self.return_segments: |
|
audio = audio + (1 / 32768) * torch.randn_like(audio) |
|
|
|
mel = self.ap.melspectrogram(audio) |
|
mel = mel[..., :-1] |
|
|
|
audio = torch.from_numpy(audio).float() |
|
mel = torch.from_numpy(mel).float().squeeze(0) |
|
return (mel, audio) |
|
|
|
@staticmethod |
|
def collate_full_clips(batch): |
|
"""This is used in tune_wavegrad.py. |
|
It pads sequences to the max length.""" |
|
max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1] |
|
max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0] |
|
|
|
mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length]) |
|
audios = torch.zeros([len(batch), max_audio_length]) |
|
|
|
for idx, b in enumerate(batch): |
|
mel = b[0] |
|
audio = b[1] |
|
mels[idx, :, : mel.shape[1]] = mel |
|
audios[idx, : audio.shape[0]] = audio |
|
|
|
return mels, audios |
|
|