|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import Conv1d, ConvTranspose1d |
|
from torch.nn import functional as F |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from torch.nn.utils.parametrize import remove_parametrizations |
|
|
|
from TTS.utils.io import load_fsspec |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
def get_padding(k, d): |
|
return int((k * d - d) / 2) |
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block. |
|
|
|
Network:: |
|
|
|
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o |
|
|--------------------------------------------------------------------------------------------------| |
|
|
|
|
|
Args: |
|
channels (int): number of hidden channels for the convolutional layers. |
|
kernel_size (int): size of the convolution filter in each layer. |
|
dilations (list): list of dilation value for each conv layer in a block. |
|
""" |
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super().__init__() |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) |
|
), |
|
weight_norm( |
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) |
|
), |
|
weight_norm( |
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) |
|
), |
|
] |
|
) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): input tensor. |
|
Returns: |
|
Tensor: output tensor. |
|
Shapes: |
|
x: [B, C, T] |
|
""" |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_parametrizations(l, "weight") |
|
for l in self.convs2: |
|
remove_parametrizations(l, "weight") |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block. |
|
|
|
Network:: |
|
|
|
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o |
|
|---------------------------------------------------| |
|
|
|
|
|
Args: |
|
channels (int): number of hidden channels for the convolutional layers. |
|
kernel_size (int): size of the convolution filter in each layer. |
|
dilations (list): list of dilation value for each conv layer in a block. |
|
""" |
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): |
|
super().__init__() |
|
self.convs = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
def forward(self, x): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_parametrizations(l, "weight") |
|
|
|
|
|
class HifiganGenerator(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
resblock_type, |
|
resblock_dilation_sizes, |
|
resblock_kernel_sizes, |
|
upsample_kernel_sizes, |
|
upsample_initial_channel, |
|
upsample_factors, |
|
inference_padding=5, |
|
cond_channels=0, |
|
conv_pre_weight_norm=True, |
|
conv_post_weight_norm=True, |
|
conv_post_bias=True, |
|
): |
|
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) |
|
|
|
Network: |
|
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o |
|
.. -> zI ---| |
|
resblockN_kNx1 -> zN ---' |
|
|
|
Args: |
|
in_channels (int): number of input tensor channels. |
|
out_channels (int): number of output tensor channels. |
|
resblock_type (str): type of the `ResBlock`. '1' or '2'. |
|
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. |
|
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. |
|
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. |
|
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 |
|
for each consecutive upsampling layer. |
|
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. |
|
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. |
|
""" |
|
super().__init__() |
|
self.inference_padding = inference_padding |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_factors) |
|
|
|
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) |
|
resblock = ResBlock1 if resblock_type == "1" else ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel // (2 ** (i + 1)) |
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(ch, k, d)) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) |
|
if cond_channels > 0: |
|
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) |
|
|
|
if not conv_pre_weight_norm: |
|
remove_parametrizations(self.conv_pre, "weight") |
|
|
|
if not conv_post_weight_norm: |
|
remove_parametrizations(self.conv_post, "weight") |
|
|
|
def forward(self, x, g=None): |
|
""" |
|
Args: |
|
x (Tensor): feature input tensor. |
|
g (Tensor): global conditioning input tensor. |
|
|
|
Returns: |
|
Tensor: output waveform. |
|
|
|
Shapes: |
|
x: [B, C, T] |
|
Tensor: [B, 1, T] |
|
""" |
|
o = self.conv_pre(x) |
|
if hasattr(self, "cond_layer"): |
|
o = o + self.cond_layer(g) |
|
for i in range(self.num_upsamples): |
|
o = F.leaky_relu(o, LRELU_SLOPE) |
|
o = self.ups[i](o) |
|
z_sum = None |
|
for j in range(self.num_kernels): |
|
if z_sum is None: |
|
z_sum = self.resblocks[i * self.num_kernels + j](o) |
|
else: |
|
z_sum += self.resblocks[i * self.num_kernels + j](o) |
|
o = z_sum / self.num_kernels |
|
o = F.leaky_relu(o) |
|
o = self.conv_post(o) |
|
o = torch.tanh(o) |
|
return o |
|
|
|
@torch.no_grad() |
|
def inference(self, c): |
|
""" |
|
Args: |
|
x (Tensor): conditioning input tensor. |
|
|
|
Returns: |
|
Tensor: output waveform. |
|
|
|
Shapes: |
|
x: [B, C, T] |
|
Tensor: [B, 1, T] |
|
""" |
|
c = c.to(self.conv_pre.weight.device) |
|
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") |
|
return self.forward(c) |
|
|
|
def remove_weight_norm(self): |
|
print("Removing weight norm...") |
|
for l in self.ups: |
|
remove_parametrizations(l, "weight") |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_parametrizations(self.conv_pre, "weight") |
|
remove_parametrizations(self.conv_post, "weight") |
|
|
|
def load_checkpoint( |
|
self, config, checkpoint_path, eval=False, cache=False |
|
): |
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) |
|
self.load_state_dict(state["model"]) |
|
if eval: |
|
self.eval() |
|
assert not self.training |
|
self.remove_weight_norm() |
|
|