|
import torch |
|
from torch import nn |
|
|
|
from TTS.encoder.models.base_encoder import BaseEncoder |
|
|
|
|
|
class LSTMWithProjection(nn.Module): |
|
def __init__(self, input_size, hidden_size, proj_size): |
|
super().__init__() |
|
self.input_size = input_size |
|
self.hidden_size = hidden_size |
|
self.proj_size = proj_size |
|
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) |
|
self.linear = nn.Linear(hidden_size, proj_size, bias=False) |
|
|
|
def forward(self, x): |
|
self.lstm.flatten_parameters() |
|
o, (_, _) = self.lstm(x) |
|
return self.linear(o) |
|
|
|
|
|
class LSTMWithoutProjection(nn.Module): |
|
def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers): |
|
super().__init__() |
|
self.lstm = nn.LSTM(input_size=input_dim, hidden_size=lstm_dim, num_layers=num_lstm_layers, batch_first=True) |
|
self.linear = nn.Linear(lstm_dim, proj_dim, bias=True) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
_, (hidden, _) = self.lstm(x) |
|
return self.relu(self.linear(hidden[-1])) |
|
|
|
|
|
class LSTMSpeakerEncoder(BaseEncoder): |
|
def __init__( |
|
self, |
|
input_dim, |
|
proj_dim=256, |
|
lstm_dim=768, |
|
num_lstm_layers=3, |
|
use_lstm_with_projection=True, |
|
use_torch_spec=False, |
|
audio_config=None, |
|
): |
|
super().__init__() |
|
self.use_lstm_with_projection = use_lstm_with_projection |
|
self.use_torch_spec = use_torch_spec |
|
self.audio_config = audio_config |
|
self.proj_dim = proj_dim |
|
|
|
layers = [] |
|
|
|
if use_lstm_with_projection: |
|
layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim)) |
|
for _ in range(num_lstm_layers - 1): |
|
layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim)) |
|
self.layers = nn.Sequential(*layers) |
|
else: |
|
self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers) |
|
|
|
self.instancenorm = nn.InstanceNorm1d(input_dim) |
|
|
|
if self.use_torch_spec: |
|
self.torch_spec = self.get_torch_mel_spectrogram_class(audio_config) |
|
else: |
|
self.torch_spec = None |
|
|
|
self._init_layers() |
|
|
|
def _init_layers(self): |
|
for name, param in self.layers.named_parameters(): |
|
if "bias" in name: |
|
nn.init.constant_(param, 0.0) |
|
elif "weight" in name: |
|
nn.init.xavier_normal_(param) |
|
|
|
def forward(self, x, l2_norm=True): |
|
"""Forward pass of the model. |
|
|
|
Args: |
|
x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` |
|
to compute the spectrogram on-the-fly. |
|
l2_norm (bool): Whether to L2-normalize the outputs. |
|
|
|
Shapes: |
|
- x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` |
|
""" |
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(enabled=False): |
|
if self.use_torch_spec: |
|
x.squeeze_(1) |
|
x = self.torch_spec(x) |
|
x = self.instancenorm(x).transpose(1, 2) |
|
d = self.layers(x) |
|
if self.use_lstm_with_projection: |
|
d = d[:, -1] |
|
if l2_norm: |
|
d = torch.nn.functional.normalize(d, p=2, dim=1) |
|
return d |
|
|