|
import glob |
|
import os |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
from coqpit import Coqpit |
|
from tqdm import tqdm |
|
|
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.audio.numpy_transforms import mulaw_encode, quantize |
|
|
|
|
|
def preprocess_wav_files(out_path: str, config: Coqpit, ap: AudioProcessor): |
|
"""Process wav and compute mel and quantized wave signal. |
|
It is mainly used by WaveRNN dataloader. |
|
|
|
Args: |
|
out_path (str): Parent folder path to save the files. |
|
config (Coqpit): Model config. |
|
ap (AudioProcessor): Audio processor. |
|
""" |
|
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True) |
|
wav_files = find_wav_files(config.data_path) |
|
for path in tqdm(wav_files): |
|
wav_name = Path(path).stem |
|
quant_path = os.path.join(out_path, "quant", wav_name + ".npy") |
|
mel_path = os.path.join(out_path, "mel", wav_name + ".npy") |
|
y = ap.load_wav(path) |
|
mel = ap.melspectrogram(y) |
|
np.save(mel_path, mel) |
|
if isinstance(config.mode, int): |
|
quant = ( |
|
mulaw_encode(wav=y, mulaw_qc=config.mode) |
|
if config.model_args.mulaw |
|
else quantize(x=y, quantize_bits=config.mode) |
|
) |
|
np.save(quant_path, quant) |
|
|
|
|
|
def find_wav_files(data_path, file_ext="wav"): |
|
wav_paths = glob.glob(os.path.join(data_path, "**", f"*.{file_ext}"), recursive=True) |
|
return wav_paths |
|
|
|
|
|
def find_feat_files(data_path): |
|
feat_paths = glob.glob(os.path.join(data_path, "**", "*.npy"), recursive=True) |
|
return feat_paths |
|
|
|
|
|
def load_wav_data(data_path, eval_split_size, file_ext="wav"): |
|
wav_paths = find_wav_files(data_path, file_ext=file_ext) |
|
assert len(wav_paths) > 0, f" [!] {data_path} is empty." |
|
np.random.seed(0) |
|
np.random.shuffle(wav_paths) |
|
return wav_paths[:eval_split_size], wav_paths[eval_split_size:] |
|
|
|
|
|
def load_wav_feat_data(data_path, feat_path, eval_split_size): |
|
wav_paths = find_wav_files(data_path) |
|
feat_paths = find_feat_files(feat_path) |
|
|
|
wav_paths.sort(key=lambda x: Path(x).stem) |
|
feat_paths.sort(key=lambda x: Path(x).stem) |
|
|
|
assert len(wav_paths) == len(feat_paths), f" [!] {len(wav_paths)} vs {feat_paths}" |
|
for wav, feat in zip(wav_paths, feat_paths): |
|
wav_name = Path(wav).stem |
|
feat_name = Path(feat).stem |
|
assert wav_name == feat_name |
|
|
|
items = list(zip(wav_paths, feat_paths)) |
|
np.random.seed(0) |
|
np.random.shuffle(items) |
|
return items[:eval_split_size], items[eval_split_size:] |
|
|