|
import json |
|
import random |
|
from typing import Any, Dict, List, Tuple, Union |
|
|
|
import fsspec |
|
import numpy as np |
|
import torch |
|
|
|
from TTS.config import load_config |
|
from TTS.encoder.utils.generic_utils import setup_encoder_model |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
def load_file(path: str): |
|
if path.endswith(".json"): |
|
with fsspec.open(path, "r") as f: |
|
return json.load(f) |
|
elif path.endswith(".pth"): |
|
with fsspec.open(path, "rb") as f: |
|
return torch.load(f, map_location="cpu") |
|
else: |
|
raise ValueError("Unsupported file type") |
|
|
|
|
|
def save_file(obj: Any, path: str): |
|
if path.endswith(".json"): |
|
with fsspec.open(path, "w") as f: |
|
json.dump(obj, f, indent=4) |
|
elif path.endswith(".pth"): |
|
with fsspec.open(path, "wb") as f: |
|
torch.save(obj, f) |
|
else: |
|
raise ValueError("Unsupported file type") |
|
|
|
|
|
class BaseIDManager: |
|
"""Base `ID` Manager class. Every new `ID` manager must inherit this. |
|
It defines common `ID` manager specific functions. |
|
""" |
|
|
|
def __init__(self, id_file_path: str = ""): |
|
self.name_to_id = {} |
|
|
|
if id_file_path: |
|
self.load_ids_from_file(id_file_path) |
|
|
|
@staticmethod |
|
def _load_json(json_file_path: str) -> Dict: |
|
with fsspec.open(json_file_path, "r") as f: |
|
return json.load(f) |
|
|
|
@staticmethod |
|
def _save_json(json_file_path: str, data: dict) -> None: |
|
with fsspec.open(json_file_path, "w") as f: |
|
json.dump(data, f, indent=4) |
|
|
|
def set_ids_from_data(self, items: List, parse_key: str) -> None: |
|
"""Set IDs from data samples. |
|
|
|
Args: |
|
items (List): Data sampled returned by `load_tts_samples()`. |
|
""" |
|
self.name_to_id = self.parse_ids_from_data(items, parse_key=parse_key) |
|
|
|
def load_ids_from_file(self, file_path: str) -> None: |
|
"""Set IDs from a file. |
|
|
|
Args: |
|
file_path (str): Path to the file. |
|
""" |
|
self.name_to_id = load_file(file_path) |
|
|
|
def save_ids_to_file(self, file_path: str) -> None: |
|
"""Save IDs to a json file. |
|
|
|
Args: |
|
file_path (str): Path to the output file. |
|
""" |
|
save_file(self.name_to_id, file_path) |
|
|
|
def get_random_id(self) -> Any: |
|
"""Get a random embedding. |
|
|
|
Args: |
|
|
|
Returns: |
|
np.ndarray: embedding. |
|
""" |
|
if self.name_to_id: |
|
return self.name_to_id[random.choices(list(self.name_to_id.keys()))[0]] |
|
|
|
return None |
|
|
|
@staticmethod |
|
def parse_ids_from_data(items: List, parse_key: str) -> Tuple[Dict]: |
|
"""Parse IDs from data samples retured by `load_tts_samples()`. |
|
|
|
Args: |
|
items (list): Data sampled returned by `load_tts_samples()`. |
|
parse_key (str): The key to being used to parse the data. |
|
Returns: |
|
Tuple[Dict]: speaker IDs. |
|
""" |
|
classes = sorted({item[parse_key] for item in items}) |
|
ids = {name: i for i, name in enumerate(classes)} |
|
return ids |
|
|
|
|
|
class EmbeddingManager(BaseIDManager): |
|
"""Base `Embedding` Manager class. Every new `Embedding` manager must inherit this. |
|
It defines common `Embedding` manager specific functions. |
|
|
|
It expects embeddings files in the following format: |
|
|
|
:: |
|
|
|
{ |
|
'audio_file_key':{ |
|
'name': 'category_name', |
|
'embedding'[<embedding_values>] |
|
}, |
|
... |
|
} |
|
|
|
`audio_file_key` is a unique key to the audio file in the dataset. It can be the path to the file or any other unique key. |
|
`embedding` is the embedding vector of the audio file. |
|
`name` can be name of the speaker of the audio file. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_file_path: Union[str, List[str]] = "", |
|
id_file_path: str = "", |
|
encoder_model_path: str = "", |
|
encoder_config_path: str = "", |
|
use_cuda: bool = False, |
|
): |
|
super().__init__(id_file_path=id_file_path) |
|
|
|
self.embeddings = {} |
|
self.embeddings_by_names = {} |
|
self.clip_ids = [] |
|
self.encoder = None |
|
self.encoder_ap = None |
|
self.use_cuda = use_cuda |
|
|
|
if embedding_file_path: |
|
if isinstance(embedding_file_path, list): |
|
self.load_embeddings_from_list_of_files(embedding_file_path) |
|
else: |
|
self.load_embeddings_from_file(embedding_file_path) |
|
|
|
if encoder_model_path and encoder_config_path: |
|
self.init_encoder(encoder_model_path, encoder_config_path, use_cuda) |
|
|
|
@property |
|
def num_embeddings(self): |
|
"""Get number of embeddings.""" |
|
return len(self.embeddings) |
|
|
|
@property |
|
def num_names(self): |
|
"""Get number of embeddings.""" |
|
return len(self.embeddings_by_names) |
|
|
|
@property |
|
def embedding_dim(self): |
|
"""Dimensionality of embeddings. If embeddings are not loaded, returns zero.""" |
|
if self.embeddings: |
|
return len(self.embeddings[list(self.embeddings.keys())[0]]["embedding"]) |
|
return 0 |
|
|
|
@property |
|
def embedding_names(self): |
|
"""Get embedding names.""" |
|
return list(self.embeddings_by_names.keys()) |
|
|
|
def save_embeddings_to_file(self, file_path: str) -> None: |
|
"""Save embeddings to a json file. |
|
|
|
Args: |
|
file_path (str): Path to the output file. |
|
""" |
|
save_file(self.embeddings, file_path) |
|
|
|
@staticmethod |
|
def read_embeddings_from_file(file_path: str): |
|
"""Load embeddings from a json file. |
|
|
|
Args: |
|
file_path (str): Path to the file. |
|
""" |
|
embeddings = load_file(file_path) |
|
speakers = sorted({x["name"] for x in embeddings.values()}) |
|
name_to_id = {name: i for i, name in enumerate(speakers)} |
|
clip_ids = list(set(sorted(clip_name for clip_name in embeddings.keys()))) |
|
|
|
embeddings_by_names = {} |
|
for x in embeddings.values(): |
|
if x["name"] not in embeddings_by_names.keys(): |
|
embeddings_by_names[x["name"]] = [x["embedding"]] |
|
else: |
|
embeddings_by_names[x["name"]].append(x["embedding"]) |
|
return name_to_id, clip_ids, embeddings, embeddings_by_names |
|
|
|
def load_embeddings_from_file(self, file_path: str) -> None: |
|
"""Load embeddings from a json file. |
|
|
|
Args: |
|
file_path (str): Path to the target json file. |
|
""" |
|
self.name_to_id, self.clip_ids, self.embeddings, self.embeddings_by_names = self.read_embeddings_from_file( |
|
file_path |
|
) |
|
|
|
def load_embeddings_from_list_of_files(self, file_paths: List[str]) -> None: |
|
"""Load embeddings from a list of json files and don't allow duplicate keys. |
|
|
|
Args: |
|
file_paths (List[str]): List of paths to the target json files. |
|
""" |
|
self.name_to_id = {} |
|
self.clip_ids = [] |
|
self.embeddings_by_names = {} |
|
self.embeddings = {} |
|
for file_path in file_paths: |
|
ids, clip_ids, embeddings, embeddings_by_names = self.read_embeddings_from_file(file_path) |
|
|
|
duplicates = set(self.embeddings.keys()) & set(embeddings.keys()) |
|
if duplicates: |
|
raise ValueError(f" [!] Duplicate embedding names <{duplicates}> in {file_path}") |
|
|
|
self.name_to_id.update(ids) |
|
self.clip_ids.extend(clip_ids) |
|
self.embeddings_by_names.update(embeddings_by_names) |
|
self.embeddings.update(embeddings) |
|
|
|
|
|
self.name_to_id = {name: i for i, name in enumerate(self.name_to_id)} |
|
|
|
def get_embedding_by_clip(self, clip_idx: str) -> List: |
|
"""Get embedding by clip ID. |
|
|
|
Args: |
|
clip_idx (str): Target clip ID. |
|
|
|
Returns: |
|
List: embedding as a list. |
|
""" |
|
return self.embeddings[clip_idx]["embedding"] |
|
|
|
def get_embeddings_by_name(self, idx: str) -> List[List]: |
|
"""Get all embeddings of a speaker. |
|
|
|
Args: |
|
idx (str): Target name. |
|
|
|
Returns: |
|
List[List]: all the embeddings of the given speaker. |
|
""" |
|
return self.embeddings_by_names[idx] |
|
|
|
def get_embeddings_by_names(self) -> Dict: |
|
"""Get all embeddings by names. |
|
|
|
Returns: |
|
Dict: all the embeddings of each speaker. |
|
""" |
|
embeddings_by_names = {} |
|
for x in self.embeddings.values(): |
|
if x["name"] not in embeddings_by_names.keys(): |
|
embeddings_by_names[x["name"]] = [x["embedding"]] |
|
else: |
|
embeddings_by_names[x["name"]].append(x["embedding"]) |
|
return embeddings_by_names |
|
|
|
def get_mean_embedding(self, idx: str, num_samples: int = None, randomize: bool = False) -> np.ndarray: |
|
"""Get mean embedding of a idx. |
|
|
|
Args: |
|
idx (str): Target name. |
|
num_samples (int, optional): Number of samples to be averaged. Defaults to None. |
|
randomize (bool, optional): Pick random `num_samples` of embeddings. Defaults to False. |
|
|
|
Returns: |
|
np.ndarray: Mean embedding. |
|
""" |
|
embeddings = self.get_embeddings_by_name(idx) |
|
if num_samples is None: |
|
embeddings = np.stack(embeddings).mean(0) |
|
else: |
|
assert len(embeddings) >= num_samples, f" [!] {idx} has number of samples < {num_samples}" |
|
if randomize: |
|
embeddings = np.stack(random.choices(embeddings, k=num_samples)).mean(0) |
|
else: |
|
embeddings = np.stack(embeddings[:num_samples]).mean(0) |
|
return embeddings |
|
|
|
def get_random_embedding(self) -> Any: |
|
"""Get a random embedding. |
|
|
|
Args: |
|
|
|
Returns: |
|
np.ndarray: embedding. |
|
""" |
|
if self.embeddings: |
|
return self.embeddings[random.choices(list(self.embeddings.keys()))[0]]["embedding"] |
|
|
|
return None |
|
|
|
def get_clips(self) -> List: |
|
return sorted(self.embeddings.keys()) |
|
|
|
def init_encoder(self, model_path: str, config_path: str, use_cuda=False) -> None: |
|
"""Initialize a speaker encoder model. |
|
|
|
Args: |
|
model_path (str): Model file path. |
|
config_path (str): Model config file path. |
|
use_cuda (bool, optional): Use CUDA. Defaults to False. |
|
""" |
|
self.use_cuda = use_cuda |
|
self.encoder_config = load_config(config_path) |
|
self.encoder = setup_encoder_model(self.encoder_config) |
|
self.encoder_criterion = self.encoder.load_checkpoint( |
|
self.encoder_config, model_path, eval=True, use_cuda=use_cuda, cache=True |
|
) |
|
self.encoder_ap = AudioProcessor(**self.encoder_config.audio) |
|
|
|
def compute_embedding_from_clip(self, wav_file: Union[str, List[str]]) -> list: |
|
"""Compute a embedding from a given audio file. |
|
|
|
Args: |
|
wav_file (Union[str, List[str]]): Target file path. |
|
|
|
Returns: |
|
list: Computed embedding. |
|
""" |
|
|
|
def _compute(wav_file: str): |
|
waveform = self.encoder_ap.load_wav(wav_file, sr=self.encoder_ap.sample_rate) |
|
if not self.encoder_config.model_params.get("use_torch_spec", False): |
|
m_input = self.encoder_ap.melspectrogram(waveform) |
|
m_input = torch.from_numpy(m_input) |
|
else: |
|
m_input = torch.from_numpy(waveform) |
|
|
|
if self.use_cuda: |
|
m_input = m_input.cuda() |
|
m_input = m_input.unsqueeze(0) |
|
embedding = self.encoder.compute_embedding(m_input) |
|
return embedding |
|
|
|
if isinstance(wav_file, list): |
|
|
|
embeddings = None |
|
for wf in wav_file: |
|
embedding = _compute(wf) |
|
if embeddings is None: |
|
embeddings = embedding |
|
else: |
|
embeddings += embedding |
|
return (embeddings / len(wav_file))[0].tolist() |
|
embedding = _compute(wav_file) |
|
return embedding[0].tolist() |
|
|
|
def compute_embeddings(self, feats: Union[torch.Tensor, np.ndarray]) -> List: |
|
"""Compute embedding from features. |
|
|
|
Args: |
|
feats (Union[torch.Tensor, np.ndarray]): Input features. |
|
|
|
Returns: |
|
List: computed embedding. |
|
""" |
|
if isinstance(feats, np.ndarray): |
|
feats = torch.from_numpy(feats) |
|
if feats.ndim == 2: |
|
feats = feats.unsqueeze(0) |
|
if self.use_cuda: |
|
feats = feats.cuda() |
|
return self.encoder.compute_embedding(feats) |
|
|