|
import math |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from TTS.tts.layers.glow_tts.glow import WN |
|
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer |
|
from TTS.tts.utils.helpers import sequence_mask |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
def convert_pad_shape(pad_shape): |
|
l = pad_shape[::-1] |
|
pad_shape = [item for sublist in l for item in sublist] |
|
return pad_shape |
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
class TextEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
n_vocab: int, |
|
out_channels: int, |
|
hidden_channels: int, |
|
hidden_channels_ffn: int, |
|
num_heads: int, |
|
num_layers: int, |
|
kernel_size: int, |
|
dropout_p: float, |
|
language_emb_dim: int = None, |
|
): |
|
"""Text Encoder for VITS model. |
|
|
|
Args: |
|
n_vocab (int): Number of characters for the embedding layer. |
|
out_channels (int): Number of channels for the output. |
|
hidden_channels (int): Number of channels for the hidden layers. |
|
hidden_channels_ffn (int): Number of channels for the convolutional layers. |
|
num_heads (int): Number of attention heads for the Transformer layers. |
|
num_layers (int): Number of Transformer layers. |
|
kernel_size (int): Kernel size for the FFN layers in Transformer network. |
|
dropout_p (float): Dropout rate for the Transformer layers. |
|
""" |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
|
|
self.emb = nn.Embedding(n_vocab, hidden_channels) |
|
|
|
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) |
|
|
|
if language_emb_dim: |
|
hidden_channels += language_emb_dim |
|
|
|
self.encoder = RelativePositionTransformer( |
|
in_channels=hidden_channels, |
|
out_channels=hidden_channels, |
|
hidden_channels=hidden_channels, |
|
hidden_channels_ffn=hidden_channels_ffn, |
|
num_heads=num_heads, |
|
num_layers=num_layers, |
|
kernel_size=kernel_size, |
|
dropout_p=dropout_p, |
|
layer_norm_type="2", |
|
rel_attn_window_size=4, |
|
) |
|
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths, lang_emb=None): |
|
""" |
|
Shapes: |
|
- x: :math:`[B, T]` |
|
- x_length: :math:`[B]` |
|
""" |
|
assert x.shape[0] == x_lengths.shape[0] |
|
x = self.emb(x) * math.sqrt(self.hidden_channels) |
|
|
|
|
|
if lang_emb is not None: |
|
x = torch.cat((x, lang_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1) |
|
|
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
|
|
x = self.encoder(x * x_mask, x_mask) |
|
stats = self.proj(x) * x_mask |
|
|
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return x, m, logs, x_mask |
|
|
|
|
|
class ResidualCouplingBlock(nn.Module): |
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
num_layers, |
|
dropout_p=0, |
|
cond_channels=0, |
|
mean_only=False, |
|
): |
|
assert channels % 2 == 0, "channels should be divisible by 2" |
|
super().__init__() |
|
self.half_channels = channels // 2 |
|
self.mean_only = mean_only |
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) |
|
|
|
self.enc = WN( |
|
hidden_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
num_layers, |
|
dropout_p=dropout_p, |
|
c_in_channels=cond_channels, |
|
) |
|
|
|
|
|
|
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) |
|
self.post.weight.data.zero_() |
|
self.post.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
""" |
|
Note: |
|
Set `reverse` to True for inference. |
|
|
|
Shapes: |
|
- x: :math:`[B, C, T]` |
|
- x_mask: :math:`[B, 1, T]` |
|
- g: :math:`[B, C, 1]` |
|
""" |
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) |
|
h = self.pre(x0) * x_mask |
|
h = self.enc(h, x_mask, g=g) |
|
stats = self.post(h) * x_mask |
|
if not self.mean_only: |
|
m, log_scale = torch.split(stats, [self.half_channels] * 2, 1) |
|
else: |
|
m = stats |
|
log_scale = torch.zeros_like(m) |
|
|
|
if not reverse: |
|
x1 = m + x1 * torch.exp(log_scale) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = torch.sum(log_scale, [1, 2]) |
|
return x, logdet |
|
else: |
|
x1 = (x1 - m) * torch.exp(-log_scale) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
return x |
|
|
|
|
|
class ResidualCouplingBlocks(nn.Module): |
|
def __init__( |
|
self, |
|
channels: int, |
|
hidden_channels: int, |
|
kernel_size: int, |
|
dilation_rate: int, |
|
num_layers: int, |
|
num_flows=4, |
|
cond_channels=0, |
|
): |
|
"""Redisual Coupling blocks for VITS flow layers. |
|
|
|
Args: |
|
channels (int): Number of input and output tensor channels. |
|
hidden_channels (int): Number of hidden network channels. |
|
kernel_size (int): Kernel size of the WaveNet layers. |
|
dilation_rate (int): Dilation rate of the WaveNet layers. |
|
num_layers (int): Number of the WaveNet layers. |
|
num_flows (int, optional): Number of Residual Coupling blocks. Defaults to 4. |
|
cond_channels (int, optional): Number of channels of the conditioning tensor. Defaults to 0. |
|
""" |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.num_layers = num_layers |
|
self.num_flows = num_flows |
|
self.cond_channels = cond_channels |
|
|
|
self.flows = nn.ModuleList() |
|
for _ in range(num_flows): |
|
self.flows.append( |
|
ResidualCouplingBlock( |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
num_layers, |
|
cond_channels=cond_channels, |
|
mean_only=True, |
|
) |
|
) |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
""" |
|
Note: |
|
Set `reverse` to True for inference. |
|
|
|
Shapes: |
|
- x: :math:`[B, C, T]` |
|
- x_mask: :math:`[B, 1, T]` |
|
- g: :math:`[B, C, 1]` |
|
""" |
|
if not reverse: |
|
for flow in self.flows: |
|
x, _ = flow(x, x_mask, g=g, reverse=reverse) |
|
x = torch.flip(x, [1]) |
|
else: |
|
for flow in reversed(self.flows): |
|
x = torch.flip(x, [1]) |
|
x = flow(x, x_mask, g=g, reverse=reverse) |
|
return x |
|
|
|
|
|
class PosteriorEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
hidden_channels: int, |
|
kernel_size: int, |
|
dilation_rate: int, |
|
num_layers: int, |
|
cond_channels=0, |
|
): |
|
"""Posterior Encoder of VITS model. |
|
|
|
:: |
|
x -> conv1x1() -> WaveNet() (non-causal) -> conv1x1() -> split() -> [m, s] -> sample(m, s) -> z |
|
|
|
Args: |
|
in_channels (int): Number of input tensor channels. |
|
out_channels (int): Number of output tensor channels. |
|
hidden_channels (int): Number of hidden channels. |
|
kernel_size (int): Kernel size of the WaveNet convolution layers. |
|
dilation_rate (int): Dilation rate of the WaveNet layers. |
|
num_layers (int): Number of the WaveNet layers. |
|
cond_channels (int, optional): Number of conditioning tensor channels. Defaults to 0. |
|
""" |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.num_layers = num_layers |
|
self.cond_channels = cond_channels |
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = WN( |
|
hidden_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels=cond_channels |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths, g=None): |
|
""" |
|
Shapes: |
|
- x: :math:`[B, C, T]` |
|
- x_lengths: :math:`[B, 1]` |
|
- g: :math:`[B, C, 1]` |
|
""" |
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
stats = self.proj(x) * x_mask |
|
mean, log_scale = torch.split(stats, self.out_channels, dim=1) |
|
z = (mean + torch.randn_like(mean) * torch.exp(log_scale)) * x_mask |
|
return z, mean, log_scale, x_mask |
|
|