|
from torch import nn |
|
|
|
from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock |
|
from TTS.tts.layers.generic.transformer import FFTransformerBlock |
|
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer |
|
|
|
|
|
class RelativePositionTransformerEncoder(nn.Module): |
|
"""Speedy speech encoder built on Transformer with Relative Position encoding. |
|
|
|
TODO: Integrate speaker conditioning vector. |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
out_channels (int): number of output channels. |
|
hidden_channels (int): number of hidden channels |
|
params (dict): dictionary for residual convolutional blocks. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, hidden_channels, params): |
|
super().__init__() |
|
self.prenet = ResidualConv1dBNBlock( |
|
in_channels, |
|
hidden_channels, |
|
hidden_channels, |
|
kernel_size=5, |
|
num_res_blocks=3, |
|
num_conv_blocks=1, |
|
dilations=[1, 1, 1], |
|
) |
|
self.rel_pos_transformer = RelativePositionTransformer(hidden_channels, out_channels, hidden_channels, **params) |
|
|
|
def forward(self, x, x_mask=None, g=None): |
|
if x_mask is None: |
|
x_mask = 1 |
|
o = self.prenet(x) * x_mask |
|
o = self.rel_pos_transformer(o, x_mask) |
|
return o |
|
|
|
|
|
class ResidualConv1dBNEncoder(nn.Module): |
|
"""Residual Convolutional Encoder as in the original Speedy Speech paper |
|
|
|
TODO: Integrate speaker conditioning vector. |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
out_channels (int): number of output channels. |
|
hidden_channels (int): number of hidden channels |
|
params (dict): dictionary for residual convolutional blocks. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, hidden_channels, params): |
|
super().__init__() |
|
self.prenet = nn.Sequential(nn.Conv1d(in_channels, hidden_channels, 1), nn.ReLU()) |
|
self.res_conv_block = ResidualConv1dBNBlock(hidden_channels, hidden_channels, hidden_channels, **params) |
|
|
|
self.postnet = nn.Sequential( |
|
*[ |
|
nn.Conv1d(hidden_channels, hidden_channels, 1), |
|
nn.ReLU(), |
|
nn.BatchNorm1d(hidden_channels), |
|
nn.Conv1d(hidden_channels, out_channels, 1), |
|
] |
|
) |
|
|
|
def forward(self, x, x_mask=None, g=None): |
|
if x_mask is None: |
|
x_mask = 1 |
|
o = self.prenet(x) * x_mask |
|
o = self.res_conv_block(o, x_mask) |
|
o = self.postnet(o + x) * x_mask |
|
return o * x_mask |
|
|
|
|
|
class Encoder(nn.Module): |
|
|
|
"""Factory class for Speedy Speech encoder enables different encoder types internally. |
|
|
|
Args: |
|
num_chars (int): number of characters. |
|
out_channels (int): number of output channels. |
|
in_hidden_channels (int): input and hidden channels. Model keeps the input channels for the intermediate layers. |
|
encoder_type (str): encoder layer types. 'transformers' or 'residual_conv_bn'. Default 'residual_conv_bn'. |
|
encoder_params (dict): model parameters for specified encoder type. |
|
c_in_channels (int): number of channels for conditional input. |
|
|
|
Note: |
|
Default encoder_params to be set in config.json... |
|
|
|
```python |
|
# for 'relative_position_transformer' |
|
encoder_params={ |
|
'hidden_channels_ffn': 128, |
|
'num_heads': 2, |
|
"kernel_size": 3, |
|
"dropout_p": 0.1, |
|
"num_layers": 6, |
|
"rel_attn_window_size": 4, |
|
"input_length": None |
|
}, |
|
|
|
# for 'residual_conv_bn' |
|
encoder_params = { |
|
"kernel_size": 4, |
|
"dilations": 4 * [1, 2, 4] + [1], |
|
"num_conv_blocks": 2, |
|
"num_res_blocks": 13 |
|
} |
|
|
|
# for 'fftransformer' |
|
encoder_params = { |
|
"hidden_channels_ffn": 1024 , |
|
"num_heads": 2, |
|
"num_layers": 6, |
|
"dropout_p": 0.1 |
|
} |
|
``` |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_hidden_channels, |
|
out_channels, |
|
encoder_type="residual_conv_bn", |
|
encoder_params={"kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13}, |
|
c_in_channels=0, |
|
): |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.in_channels = in_hidden_channels |
|
self.hidden_channels = in_hidden_channels |
|
self.encoder_type = encoder_type |
|
self.c_in_channels = c_in_channels |
|
|
|
|
|
if encoder_type.lower() == "relative_position_transformer": |
|
|
|
|
|
self.encoder = RelativePositionTransformerEncoder( |
|
in_hidden_channels, out_channels, in_hidden_channels, encoder_params |
|
) |
|
elif encoder_type.lower() == "residual_conv_bn": |
|
self.encoder = ResidualConv1dBNEncoder(in_hidden_channels, out_channels, in_hidden_channels, encoder_params) |
|
elif encoder_type.lower() == "fftransformer": |
|
assert ( |
|
in_hidden_channels == out_channels |
|
), "[!] must be `in_channels` == `out_channels` when encoder type is 'fftransformer'" |
|
|
|
self.encoder = FFTransformerBlock(in_hidden_channels, **encoder_params) |
|
else: |
|
raise NotImplementedError(" [!] unknown encoder type.") |
|
|
|
def forward(self, x, x_mask, g=None): |
|
""" |
|
Shapes: |
|
x: [B, C, T] |
|
x_mask: [B, 1, T] |
|
g: [B, C, 1] |
|
""" |
|
o = self.encoder(x, x_mask) |
|
return o * x_mask |
|
|