|
import math |
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn.utils.parametrize import remove_parametrizations |
|
|
|
from TTS.utils.io import load_fsspec |
|
from TTS.vocoder.layers.parallel_wavegan import ResidualBlock |
|
from TTS.vocoder.layers.upsample import ConvUpsample |
|
|
|
|
|
class ParallelWaveganGenerator(torch.nn.Module): |
|
"""PWGAN generator as in https://arxiv.org/pdf/1910.11480.pdf. |
|
It is similar to WaveNet with no causal convolution. |
|
It is conditioned on an aux feature (spectrogram) to generate |
|
an output waveform from an input noise. |
|
""" |
|
|
|
|
|
def __init__( |
|
self, |
|
in_channels=1, |
|
out_channels=1, |
|
kernel_size=3, |
|
num_res_blocks=30, |
|
stacks=3, |
|
res_channels=64, |
|
gate_channels=128, |
|
skip_channels=64, |
|
aux_channels=80, |
|
dropout=0.0, |
|
bias=True, |
|
use_weight_norm=True, |
|
upsample_factors=[4, 4, 4, 4], |
|
inference_padding=2, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.aux_channels = aux_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.stacks = stacks |
|
self.kernel_size = kernel_size |
|
self.upsample_factors = upsample_factors |
|
self.upsample_scale = np.prod(upsample_factors) |
|
self.inference_padding = inference_padding |
|
self.use_weight_norm = use_weight_norm |
|
|
|
|
|
assert num_res_blocks % stacks == 0 |
|
layers_per_stack = num_res_blocks // stacks |
|
|
|
|
|
self.first_conv = torch.nn.Conv1d(in_channels, res_channels, kernel_size=1, bias=True) |
|
|
|
|
|
self.upsample_net = ConvUpsample(upsample_factors=upsample_factors) |
|
|
|
|
|
self.conv_layers = torch.nn.ModuleList() |
|
for layer in range(num_res_blocks): |
|
dilation = 2 ** (layer % layers_per_stack) |
|
conv = ResidualBlock( |
|
kernel_size=kernel_size, |
|
res_channels=res_channels, |
|
gate_channels=gate_channels, |
|
skip_channels=skip_channels, |
|
aux_channels=aux_channels, |
|
dilation=dilation, |
|
dropout=dropout, |
|
bias=bias, |
|
) |
|
self.conv_layers += [conv] |
|
|
|
|
|
self.last_conv_layers = torch.nn.ModuleList( |
|
[ |
|
torch.nn.ReLU(inplace=True), |
|
torch.nn.Conv1d(skip_channels, skip_channels, kernel_size=1, bias=True), |
|
torch.nn.ReLU(inplace=True), |
|
torch.nn.Conv1d(skip_channels, out_channels, kernel_size=1, bias=True), |
|
] |
|
) |
|
|
|
|
|
if use_weight_norm: |
|
self.apply_weight_norm() |
|
|
|
def forward(self, c): |
|
""" |
|
c: (B, C ,T'). |
|
o: Output tensor (B, out_channels, T) |
|
""" |
|
|
|
x = torch.randn([c.shape[0], 1, c.shape[2] * self.upsample_scale]) |
|
x = x.to(self.first_conv.bias.device) |
|
|
|
|
|
if c is not None and self.upsample_net is not None: |
|
c = self.upsample_net(c) |
|
assert ( |
|
c.shape[-1] == x.shape[-1] |
|
), f" [!] Upsampling scale does not match the expected output. {c.shape} vs {x.shape}" |
|
|
|
|
|
x = self.first_conv(x) |
|
skips = 0 |
|
for f in self.conv_layers: |
|
x, h = f(x, c) |
|
skips += h |
|
skips *= math.sqrt(1.0 / len(self.conv_layers)) |
|
|
|
|
|
x = skips |
|
for f in self.last_conv_layers: |
|
x = f(x) |
|
|
|
return x |
|
|
|
@torch.no_grad() |
|
def inference(self, c): |
|
c = c.to(self.first_conv.weight.device) |
|
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") |
|
return self.forward(c) |
|
|
|
def remove_weight_norm(self): |
|
def _remove_weight_norm(m): |
|
try: |
|
|
|
remove_parametrizations(m, "weight") |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
def _apply_weight_norm(m): |
|
if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)): |
|
torch.nn.utils.parametrizations.weight_norm(m) |
|
|
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
@staticmethod |
|
def _get_receptive_field_size(layers, stacks, kernel_size, dilation=lambda x: 2**x): |
|
assert layers % stacks == 0 |
|
layers_per_cycle = layers // stacks |
|
dilations = [dilation(i % layers_per_cycle) for i in range(layers)] |
|
return (kernel_size - 1) * sum(dilations) + 1 |
|
|
|
@property |
|
def receptive_field_size(self): |
|
return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size) |
|
|
|
def load_checkpoint( |
|
self, config, checkpoint_path, eval=False, cache=False |
|
): |
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) |
|
self.load_state_dict(state["model"]) |
|
if eval: |
|
self.eval() |
|
assert not self.training |
|
if self.use_weight_norm: |
|
self.remove_weight_norm() |
|
|